Combined orbital tomography study of multi-configurational molecular adsorbate systems

dc.authoridZamborlini, Giovanni/0000-0002-0460-4958
dc.authoridvon Arx, Karin/0000-0002-8367-5454
dc.authoridJugovac, Matteo/0000-0001-9525-3980
dc.authoridFeyer, Vitaliy/0000-0002-7104-5420
dc.authoridGurdal, Yeliz/0000-0002-6245-891X
dc.contributor.authorKliuiev, Pavel
dc.contributor.authorZamborlini, Giovanni
dc.contributor.authorJugovac, Matteo
dc.contributor.authorGurdal, Yeliz
dc.contributor.authorvon Arx, Karin
dc.contributor.authorWaltar, Kay
dc.contributor.authorSchnidrig, Stephan
dc.date.accessioned2025-01-06T17:44:56Z
dc.date.available2025-01-06T17:44:56Z
dc.date.issued2019
dc.description.abstractMolecular reactivity is determined by the energy levels and spatial extent of the frontier orbitals. Orbital tomography based on angle-resolved photoelectron spectroscopy is an elegant method to study the electronic structure of organic adsorbates, however, it is conventionally restricted to systems with one single rotational domain. In this work, we extend orbital tomography to systems with multiple rotational domains. We characterise the hydrogen evolution catalyst Co-pyrphyrin on an Ag(110) substrate and compare it with the empty pyrphyrin ligand. In combination with low-energy electron diffraction and DFT simulations, we fully determine adsorption geometry and both energetics and spatial distributions of the valence electronic states. We find two states close to the Fermi level in Co-pyrphyrin with Co 3d character that are not present in the empty ligand. In addition, we identify several energetically nearly equivalent adsorption geometries that are important for the understanding of the electronic structure. The ability to disentangle and fully elucidate multi-configurational systems renders orbital tomography much more useful to study realistic catalytic systems.
dc.description.sponsorshipSwiss National Science Foundation (NCCR MUST); Swiss National Science Foundation (Sinergia Project) [CRSII2_160801/1]; University of Zurich (URPP LightChEC)
dc.description.sponsorshipFinancial support by the Swiss National Science Foundation (NCCR MUST and Sinergia Project CRSII2_160801/1) and by the University of Zurich (URPP LightChEC) is gratefully acknowledged. Computing time was provided through the Partnership in Advanced Computing in Europe (PRACE) and by the Swiss National Supercomputer Centre (CSCS).
dc.identifier.doi10.1038/s41467-019-13254-7
dc.identifier.issn2041-1723
dc.identifier.pmid31748503
dc.identifier.scopus2-s2.0-85075256920
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1038/s41467-019-13254-7
dc.identifier.urihttps://hdl.handle.net/20.500.14669/3252
dc.identifier.volume10
dc.identifier.wosWOS:000497694100023
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.language.isoen
dc.publisherNature Publishing Group
dc.relation.ispartofNature Communications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241211
dc.subjectElectronıc-Structure
dc.subjectAdsorptıon
dc.subjectReconstructıon
dc.subjectSpace
dc.titleCombined orbital tomography study of multi-configurational molecular adsorbate systems
dc.typeArticle

Dosyalar