Combined orbital tomography study of multi-configurational molecular adsorbate systems

[ X ]

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Nature Publishing Group

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Molecular reactivity is determined by the energy levels and spatial extent of the frontier orbitals. Orbital tomography based on angle-resolved photoelectron spectroscopy is an elegant method to study the electronic structure of organic adsorbates, however, it is conventionally restricted to systems with one single rotational domain. In this work, we extend orbital tomography to systems with multiple rotational domains. We characterise the hydrogen evolution catalyst Co-pyrphyrin on an Ag(110) substrate and compare it with the empty pyrphyrin ligand. In combination with low-energy electron diffraction and DFT simulations, we fully determine adsorption geometry and both energetics and spatial distributions of the valence electronic states. We find two states close to the Fermi level in Co-pyrphyrin with Co 3d character that are not present in the empty ligand. In addition, we identify several energetically nearly equivalent adsorption geometries that are important for the understanding of the electronic structure. The ability to disentangle and fully elucidate multi-configurational systems renders orbital tomography much more useful to study realistic catalytic systems.

Açıklama

Anahtar Kelimeler

Electronıc-Structure, Adsorptıon, Reconstructıon, Space

Kaynak

Nature Communications

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

10

Sayı

Künye