Complete flat cone metrics on punctured surfaces

dc.contributor.authorSaglam, Ismail
dc.date.accessioned2025-01-06T17:37:54Z
dc.date.available2025-01-06T17:37:54Z
dc.date.issued2019
dc.description.abstractWe prove that each complete flat cone metric on a surface with regular or irregular punctures can be triangulated with finitely many types of triangles. We derive the Gauss-Bonnet formula for this kind of cone metrics. In addition, we prove that each free homotopy class of paths has a geodesic representative.
dc.identifier.doi10.3906/mat-1806-23
dc.identifier.endpage832
dc.identifier.issn1300-0098
dc.identifier.issn1303-6149
dc.identifier.issue2
dc.identifier.scopus2-s2.0-85064173419
dc.identifier.scopusqualityQ2
dc.identifier.startpage813
dc.identifier.trdizinid335636
dc.identifier.urihttps://doi.org/10.3906/mat-1806-23
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/335636
dc.identifier.urihttps://hdl.handle.net/20.500.14669/2413
dc.identifier.volume43
dc.identifier.wosWOS:000462461500018
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakTR-Dizin
dc.language.isoen
dc.publisherTubitak Scientific & Technological Research Council Turkey
dc.relation.ispartofTurkish Journal of Mathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241211
dc.subjectFlat metric
dc.subjectthe Gauss-Bonnet formula
dc.subjectsurfaces with punctures
dc.subjectthe Hopf-Rinow theorem
dc.titleComplete flat cone metrics on punctured surfaces
dc.typeArticle

Dosyalar