Complete flat cone metrics on punctured surfaces
[ X ]
Tarih
2019
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Tubitak Scientific & Technological Research Council Turkey
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
We prove that each complete flat cone metric on a surface with regular or irregular punctures can be triangulated with finitely many types of triangles. We derive the Gauss-Bonnet formula for this kind of cone metrics. In addition, we prove that each free homotopy class of paths has a geodesic representative.
Açıklama
Anahtar Kelimeler
Flat metric, the Gauss-Bonnet formula, surfaces with punctures, the Hopf-Rinow theorem
Kaynak
Turkish Journal of Mathematics
WoS Q Değeri
Q3
Scopus Q Değeri
Q2
Cilt
43
Sayı
2