Complete flat cone metrics on punctured surfaces

[ X ]

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Tubitak Scientific & Technological Research Council Turkey

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

We prove that each complete flat cone metric on a surface with regular or irregular punctures can be triangulated with finitely many types of triangles. We derive the Gauss-Bonnet formula for this kind of cone metrics. In addition, we prove that each free homotopy class of paths has a geodesic representative.

Açıklama

Anahtar Kelimeler

Flat metric, the Gauss-Bonnet formula, surfaces with punctures, the Hopf-Rinow theorem

Kaynak

Turkish Journal of Mathematics

WoS Q Değeri

Q3

Scopus Q Değeri

Q2

Cilt

43

Sayı

2

Künye