Investigation of nanoparticle diameter influences on performance of hydrodynamic journal bearings operating with nanolubricant

[ X ]

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Sage Publications Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The nanolubricant's effectiveness on the bearings' performance depends on the types of nanoparticles, volume ratio, and their size and/or diameter. Although the nanolubricant influences on the characteristics of the journal bearings are well known, cost-effective solutions for using nanolubricants, have continued to need in industrial applications. Because the nanoparticle's diameter plays a key role in the fluid with nanoparticle additives, research on its effect is important for hydrodynamic journal bearing. In this work, the nanoparticle diameter impacts on the characteristics of the hydrodynamic journal bearings are investigated with under thermal effects. At first, four hydrodynamic journal bearings have different parameters such as radial clearance and bearing length-diameter ratio are considered and designed. Then, the lubricant flow through the radial clearance is modeled with Dowson's equation. Besides, the temperature field in the journal and the lubricant are governed by the heat conduction and energy equations, respectively. The physical and thermal properties of the nanolubricant are expressed by considering nanoparticle diameter and the volume ratio. Then, an algorithm is developed to solve the mathematical models based on the finite difference method. Finally, a serial simulation is conducted under different nanoparticle diameters and operational conditions. When the nanoparticle diameter becomes small, the temperature and pressure values of the nanolubricant, load capacity, and stiffness increase.

Açıklama

Anahtar Kelimeler

Journal bearing, thermo-hydrodynamic analysis, bearing geometrical parameters

Kaynak

Proceedings of The Institution of Mechanical Engineers Part J-Journal of Engineering Tribology

WoS Q Değeri

N/A

Scopus Q Değeri

Q2

Cilt

238

Sayı

5

Künye