Multidisciplinary optimization of high aspect ratio composite wings with geometrical nonlinearity and aeroelastic tailoring
[ X ]
Tarih
2024
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier France-Editions Scientifiques Medicales Elsevier
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
This study presents a systematic numerical approach for the design and optimization of high aspect ratio composite wings subjected to aerodynamic loads. The primary objective is to develop a multi-objective, multidisciplinary optimization framework that considers aerostructural constraints, such as subsonic aeroelasticity and geometrical nonlinearity. The incorporation of anisotropic properties of composite materials is emphasized to construct lightweight aerospace structures. Aeroelastic tailoring, a technique leveraging these properties, is employed in the optimization process. The proposed methodology integrates three analysis tools, Finite Element software for structural behavior simulation, an in-house Reduced Order Model (ROM) framework for nonlinear aeroelastic analyses with tailoring capabilities, and Particle Swarm Optimization (PSO) as a population-based stochastic optimization method. This integration enables the development of a powerful numerical approach, implemented in the Nonlinear Aeroelastic Simulation Software (NAS2) package, for designing composite wings with optimized aeroelastic and structural performance. The proposed methodology has broad applicability in aerospace engineering, encompassing aircraft and unmanned aerial vehicles, offering significant potential to enhance their design and overall performance.
Açıklama
Anahtar Kelimeler
Multidisciplinary optimization, Aircraft wing, Composite material, Aeroelastic tailoring, Reduced Order Model, weight optimization
Kaynak
Aerospace Science and Technology
WoS Q Değeri
N/A
Scopus Q Değeri
Q1
Cilt
145