Large Displacement Static Analysis of Composite Elliptic Panels of Revolution having Variable Thickness and Resting on Winkler-Pasternak Elastic Foundation

dc.contributor.authorKalbaran, Ozgur
dc.contributor.authorKurtaran, Hasan
dc.date.accessioned2025-01-06T17:44:48Z
dc.date.available2025-01-06T17:44:48Z
dc.date.issued2019
dc.description.abstractNonlinear static response of laminated composite Elliptic Panels of Revolution Structure(s) (EPRS) having variable thickness resting on Winkler-Pasternak (W-P) Elastic Foundation is investigated in this article. Generalized Differential Quadrature (GDQ) method is utilized to obtain the numerical solution of EPRS. The first-order shear deformation theory (FSDT) is employed to consider the transverse shear effects in static analyses. To determine the variable thickness, three types of thickness profiles namely cosine, sine and linear functions are used. Equilibrium equations are derived via virtual work principle using Green-Lagrange nonlinear strain-displacement relationships. The deepness terms are considered in Green-Lagrange strain-displacement relationships. The differential quadrature rule is employed to calculate the partial derivatives in equilibrium equations. Nonlinear static equilibrium equations are solved using Newton-Raphson method. Computer programs for EPRS are developed to implement the GDQ method in the solution of equilibrium equations. Accuracy of the proposed method is verified by comparing the results with Finite Element Method (FEM) solutions. After validation, several cases are carried out to examine the effect of elastic foundation parameters, thickness variation factor, thickness functions, boundary conditions and geometric characteristic parameter of EPRS on the geometrically nonlinear behavior of laminated composite EPRS.
dc.identifier.doi10.1590/1679-78255842
dc.identifier.issn1679-7825
dc.identifier.issue9
dc.identifier.scopus2-s2.0-85078177025
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1590/1679-78255842
dc.identifier.urihttps://hdl.handle.net/20.500.14669/3168
dc.identifier.volume16
dc.identifier.wosWOS:000504405100002
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherLatin Amer J Solids Structures
dc.relation.ispartofLatin American Journal of Solids and Structures
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241211
dc.subjectVariable thickness
dc.subjectElliptic shells of revolution
dc.subjectGeneralized differential quadrature
dc.subjectWinkler-Pasternak elastic foundation
dc.subjectGeometric nonlinearity
dc.titleLarge Displacement Static Analysis of Composite Elliptic Panels of Revolution having Variable Thickness and Resting on Winkler-Pasternak Elastic Foundation
dc.typeArticle

Dosyalar