Optical properties of GaAs1-xBix/GaAs quantum well structures grown by molecular beam epitaxy on (100) and (311)B GaAs substrates
dc.authorid | Gunes, Mustafa/0000-0002-7974-0540 | |
dc.authorid | Alghamdi, Haifaa/0000-0003-2456-0419 | |
dc.authorid | Hilska, Joonas/0000-0002-0595-8993 | |
dc.authorid | Guina, Mircea/0000-0002-9317-8187 | |
dc.authorid | Galeti, Helder/0000-0002-5217-8367 | |
dc.authorid | Erol, Ayse/0000-0003-4196-1791 | |
dc.authorid | Donmez, Omer/0000-0002-7635-3991 | |
dc.contributor.author | Gunes, M. | |
dc.contributor.author | Ukelge, M. O. | |
dc.contributor.author | Donmez, O. | |
dc.contributor.author | Erol, A. | |
dc.contributor.author | Gumus, C. | |
dc.contributor.author | Alghamdi, H. | |
dc.contributor.author | Galeti, H. V. A. | |
dc.date.accessioned | 2025-01-06T17:43:51Z | |
dc.date.available | 2025-01-06T17:43:51Z | |
dc.date.issued | 2018 | |
dc.description.abstract | In this work, the electronic bandstructure of GaAs1-xBix/GaAs single quantum well (QW) samples grown by molecular beam epitaxy is investigated by photomodulated reflectance (PR) measurements as a function of Bi content (0.0065 <= x <= 0.0215) and substrate orientation. The Bi composition is determined via simulation of high-resolution x-ray diffraction measurement and is found to be maximized in the 2.15%Bi and 2.1%Bi samples grown on (100) and (311)B GaAs substrates. However, the simulations indicate that the Bi composition is not only limited in the GaAsBi QW layer but extends out of the GaAsBi QW towards the GaAs barrier and forms a GaAsBi epilayer. PR spectra are fitted with the third derivative function form (TDFF) to identify the optical transition energies. We analyze the TDFF results by considering strain-induced modification on the conduction band (CB) and splitting of the valence band (VB) due to its interaction with the localized Bi level and VB interaction. The PR measurements confirm the existence of a GaAsBi epilayer via observed optical transitions that belong to GaAsBi layers with various Bi compositions. It is found that both Bi composition and substrate orientation have strong effects on the PR signal. Comparison between TDFF and calculated optical transition energies provides a bandgap reduction of 92 meV/%Bi and 36 meV/%Bi and an interaction strength of the isolated Bi atoms with host GaAs valence band (C-BiM) of 1.7 eV and 0.9 eV for (100) and (311)B GaAs substrates, respectively. | |
dc.description.sponsorship | Scientific Research Projects Coordination Unit of Istanbul University [ONAP-52321, FYD-2016-20128]; Scientific and Technical Research Council of Turkey (TUBITAK) [115F063]; FAPESP [16/10668-7, 14/50513-7]; European Research Council (ERC AdG AMETIST) [695116]; Academy of Finland [259111]; Academy of Finland (AKA) [259111] Funding Source: Academy of Finland (AKA); Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP) [14/50513-7] Funding Source: FAPESP | |
dc.description.sponsorship | This work was partially supported by the Scientific Research Projects Coordination Unit of Istanbul University (ONAP-52321 and FYD-2016-20128) and supported by The Scientific and Technical Research Council of Turkey (TUBITAK) under Grant No. 115F063. YGG acknowledges the financial support from FAPESP (grants numbers 16/10668-7 and 14/50513-7). JP, JH and MC acknowledge the financial support from European Research Council (ERC AdG AMETIST, #695116) and the Academy of Finland (TransPhoton, #259111). | |
dc.identifier.doi | 10.1088/1361-6641/aaea2e | |
dc.identifier.issn | 0268-1242 | |
dc.identifier.issn | 1361-6641 | |
dc.identifier.issue | 12 | |
dc.identifier.scopus | 2-s2.0-85057810892 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1088/1361-6641/aaea2e | |
dc.identifier.uri | https://hdl.handle.net/20.500.14669/2833 | |
dc.identifier.volume | 33 | |
dc.identifier.wos | WOS:000450238200001 | |
dc.identifier.wosquality | Q2 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Iop Publishing Ltd | |
dc.relation.ispartof | Semiconductor Science and Technology | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.snmz | KA_20241211 | |
dc.subject | oriented GaAsBi | |
dc.subject | high-index substrate | |
dc.subject | photomodulated reflectance | |
dc.subject | strained quantum well | |
dc.subject | type I band line-up | |
dc.title | Optical properties of GaAs1-xBix/GaAs quantum well structures grown by molecular beam epitaxy on (100) and (311)B GaAs substrates | |
dc.type | Article |