Appraisal of energy loss reduction in green buildings using large-scale experiments compiled with swarm intelligent solutions

[ X ]

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Today, the issue of energy efficiency is a major one in global politics. The external environment, particularly the wind speed and outside air temperature, determines the thermal burden the cold outside air places on a building's interior. The heat load of a building is influenced by several factors, including the wall's heat transfer coefficients (W/mK), the coating material (W/mK), the inside temperature (degrees C), and the outside temperature (degrees C), and the temperature of external surface (degrees C). In this investigation, we undertake a comprehensive assessment, evaluation, and comparing the performance of two unique artificial approaches (BSA and COA) utilized for anticipating heat loss in green buildings; the optimum way is then identified depending on the R-2 and RMSE criteria. The outcomes demonstrate that BSA and COA have R-2 values of (0.97038 and 0.90158) and (0.9919 and 0.94239) in the training and testing phases. Additionally, the RMSE values for BSA and COA in the training and testing stages are (0.02541 and 0.08616) and (0.01336 and 0.06662), correspondingly. Also, the estimated MAEs (0.019055 and 0.0097193) denote a low level of training error for both methods. Regarding R-2, RMSE and MAE values, the COA predicts energy loss more accurately.

Açıklama

Anahtar Kelimeler

Building, Residential, Swarm intelligent, Energy effeciency, Energy loss

Kaynak

Sustainable Energy Technologies and Assessments

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

57

Sayı

Künye