Assessment of window renovation potential in an apartment with an energy performance approach

[ X ]

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Oxford Univ Press

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Windows are of great importance in improving the energy efficiency of buildings. It is possible to achieve this with the help of the regeneration of window design. The amount of energy used, the expense of heating and cooling, and the emissions of greenhouse gases that contribute to climate change can all be significantly reduced by improving the energy efficiency of windows. For this, computer modeling and BIM-based simulation programs provide significant timesaving in simultaneously evaluating design variations' visual and thermal results. This study selected a four-story residential building to analyze the energy load and thermal comfort of the windows redesign and examine the energy-saving potential for residential buildings. To analyze the renewed window design strategies, a four-story apartment building is selected as a case study in Izmir/Turkey (38 degrees 4 ', 27 degrees 2 '). This apartment is built on a 90 m2 gross floor area. The existing indoor environmental conditions of the flat are generally observed as cool and low illuminated by the occupants, so the window design options must be compared and renewed. As the first option, current conditions are simulated. The second option is to simulate different patterns for window-to-wall ratio (WWR). Moreover, the third option is to simulate different types of glass in each window. Currently, the WWR of the selected flat in the north, east and south directions is around 10%. But more is needed to provide daylight to the apartment. This article used Autodesk Revit and Green Building Studio simulations to investigate WWR and glass types and evaluate energy use intensity's (EUI) impact. As a result, this study shows that a 10% WWR on all building facades leads to an EUI of 993.9 MJ/m2/year. In contrast, increasing the WWR to 95% significantly increased EUI, reaching 2121 MJ/m2/year. In addition, it has been shown that the use of low U-value glasses, such as translucent wall panels and super-insulated three-pane clear Low-E, can provide energy savings of up to 5% per year, and especially the super-insulated three-pane Low-E glass type provides the highest efficiency on all facades.

Açıklama

Anahtar Kelimeler

redesign, simulation-based design, energy use, window-to-wall ratio, residential building

Kaynak

International Journal of Low-Carbon Technologies

WoS Q Değeri

N/A

Scopus Q Değeri

Q1

Cilt

19

Sayı

Künye