An improved KNN classifier based on a novel weighted voting function and adaptive k-value selection

[ X ]

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer London Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

This paper presents a modified KNN classifier (HMAKNN) based on the harmonic mean of the vote and average distance of the neighbors of each class label combined with adaptive k-value selection. Within the scope of this study, two different versions of HMAKNN, regular and weighted, HMAKNN(R) and HMAKNN(W), were developed depending on whether there is a weighting mechanism or not. These proposed HMAKNN classifiers were tested eight syntetic and twenty-six real benchmark data sets. In order to reveal the effectiveness and the performance of the proposed methods on classification, they were compared with its constituent KNN and four other well-known distance-weighted KNN methods. Unlike other weighting methods, both HMAKNN classifiers use the synergy between majority voting and average distance together, along with the ability to adaptively adjust the k-value, helping to significantly improve classification accuracy. The results on twenty-six real benchmark data sets suggest that both HMAKNN methods produce more accurate results in terms of average ACC and FScore metrics and statistically outperform all competing methods.

Açıklama

Anahtar Kelimeler

k-nearest neighbors, Harmonic mean, Adaptive k-value selection, Majority voting

Kaynak

Neural Computing & Applications

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

36

Sayı

8

Künye