PIV measurement downstream of perforated cylinder in deep water

[ X ]

Tarih

2018

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Science Bv

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The flow structure of perforated circular cylinders was thoroughly scrutinized by using the technique of high-image-density Particle Image Velocimetry (Ply). The perforated circular cylinder diameter (D = 100 mm), was kept constant during the experimental investigation and corresponding Reynolds number was Re = 10 000 based on the cylinder diameter. Turbulent statistics e.g., planar turbulent kinetic energy, stream-wise Reynolds normal stress, transverse Reynolds normal stress and Reynolds shear stress were computed in the wake region in order to reveal the differences among various porosities in the range of 0.25 <= beta <= 0.80. It would be noted that by increasing porosity, beta the flow fluctuations are substantially reduced in the wake region according to the PIV results. As a result, the prevention of Karman Vortex Street was accomplished by the use of perforated cylinders because of elongated and fragmented shear layers and reduced magnitudes of vortices. (C) 2018 Elsevier Masson SAS. All rights reserved.

Açıklama

Anahtar Kelimeler

Flow structure, Deep water, Perforated cylinder, Ply

Kaynak

European Journal of Mechanics B-Fluids

WoS Q Değeri

Q3

Scopus Q Değeri

Q1

Cilt

72

Sayı

Künye