Experimental and theoretical study: Design and implementation of a floating photovoltaic system for hydrogen production

[ X ]

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Wiley

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this study, lab-made modified graphite cathodes were used to design and implement floating PV assisted alkaline electrolysis cell. The influence of temperature on PV performance was studied both experimentally and theoretically, and the PV module performance was investigated in floating as well as non-floating modes. Power generation of floating PV panel and non-floating PV panel at four different air temperatures was examined. Although there was no substantial improvement in power generation at 6 degrees C or 16 degrees C, values improved by 6.25% and 10.75% at 24 degrees C and 37 degrees C, respectively. For alkaline electrolysis cell part of this system, the graphite (G) cathode was galvanostatically coated with nickel (G/Ni) and decorated with cobalt nano-particles (G/Ni/Co). The characterization of the electrode was achieved using X-Ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The Co(111)-decorated Ni was determined by XRD, the electrode surface was very rough in FE-SEM micrographs, the detected features provided a larger contact area that supported the formation of simultaneous electrochemical reactions. The electrochemical behavior of electrodes were determined in 1 M KOH by cyclic voltammetry (CV). The modified cathode (G/Ni/Co) enhanced the hydrogen production performance owing to lower hydrogen onset potential. Electronic structure calculations were carried out in order to investigate water as well as proton adsorption on a Co-decorated Ni(111) surface. Density Functional Theory (DFT) calculations identified the role of Co cluster and Ni surface on water and proton adsorptions. According to our knowledge of the literature to date, the practical and theoretical analysis of a floating PV assisted-an alkaline electrolysis system that worked with the laboratory-made electrodes has not been performed before. Results showed that floating PV panels were beneficial than land mounted panels and the G/Ni/Co enhanced the hydrogen generation performance of the system.

Açıklama

Anahtar Kelimeler

alkaline electrolysis, DFT, floating PV panel, PV-assisted hydrogen production

Kaynak

International Journal of Energy Research

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

46

Sayı

4

Künye