Effect of turbulence modeling on hydrodynamics of a turbulent contact absorber

[ X ]

Tarih

2020

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Science Sa

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

A computational fluid dynamics (CFD) study is conducted to find a suitable two equation turbulence model for accurate prediction of hydrodynamics of an inhouse turbulence contact absorber (TCA) at high gas and liquid velocities. Based on the multi-fluid Eulerian approach, hydrodynamics of TCA is simulated by incorporating three turbulence models i.e. standard k-epsilon model, RNG k-epsilon model and SST k-omega model in ANSYS Fluent (R). The solid phase stresses were closed by using the kinetic theory of granular flows (KTGF). TCA hydrodynamics parameters; expanded bed height and bed pressure drop were used to compare the results of this study with experimental data and also with earlier numerical study published with laminar viscous model. It was found that the RNG k-epsilon model predicted the bed height and pressure drop better than its counterparts. To accurately find the effects of secondary phase turbulence, two RNG k-epsilon model options i-e. per phase and dispersed were also evaluated. The results show that the per phase option of RNG k-epsilon model produced the expanded bed height and pressure drop in close agreement with available experimental data at similar operating conditions.

Açıklama

Anahtar Kelimeler

Turbulent contact absorber, Turbulence modeling, Hydrodynamics, Multi-fluid Eulerian model, RNG k-epsilon model, Computational fluid dynamics

Kaynak

Chemical Engineering and Processing-Process Intensification

WoS Q Değeri

Q2

Scopus Q Değeri

Q1

Cilt

156

Sayı

Künye