LAM: Scrutinizing Leading APIs For Detecting Suspicious Call Sequences

dc.authoridAlam, Shahid/0000-0002-4080-8042
dc.contributor.authorAlam, Shahid
dc.date.accessioned2025-01-06T17:43:30Z
dc.date.available2025-01-06T17:43:30Z
dc.date.issued2023
dc.description.abstractThe proliferation of smartphones has given exponential rise to the number of new mobile malware. These malware programs are employing stealthy obfuscations to hide their malicious activities. To perform malicious activities a program must make application programming interface (API) calls. Unlike dynamic, static analysis can find all the API call paths but have some issues: large number of features; higher false positives when features reduced; and lowering false positives increases the detection rate. Certain Android API calls, e.g. android.app.Activity:boolean requestWindowFeature(int) enable malware programs to call other APIs to hide their activities. We call them leading APIs as they can lead to malicious activities. To overcome these issues, we propose new heuristics and feature groupings for building a Leading API-call Map, named LAM. We create LAM from a dominant (leading) API call tree. Dominance is a transitive relation and hence enumerates all the call sequences that a leading API leads to. LAM substantially reduces the number and improves the quality of features for combating obfuscations and detecting suspicious call sequences with few false positives. For the dataset used in this paper, LAM reduced the number of features from 509 607 to 29 977. Using 10-fold cross-validation, LAM achieved an accuracy of 97.9% with 0.4% false positives.
dc.identifier.doi10.1093/comjnl/bxac110
dc.identifier.endpage2655
dc.identifier.issn0010-4620
dc.identifier.issn1460-2067
dc.identifier.issue11
dc.identifier.scopus2-s2.0-85178342936
dc.identifier.scopusqualityQ2
dc.identifier.startpage2638
dc.identifier.urihttps://doi.org/10.1093/comjnl/bxac110
dc.identifier.urihttps://hdl.handle.net/20.500.14669/2668
dc.identifier.volume66
dc.identifier.wosWOS:000833571400001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherOxford Univ Press
dc.relation.ispartofComputer Journal
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241211
dc.subjectLeading APIs
dc.subjectSuspicious call sequences
dc.subjectMalware analysis and detection
dc.subjectHeuristics
dc.subjectMachine learning
dc.titleLAM: Scrutinizing Leading APIs For Detecting Suspicious Call Sequences
dc.typeArticle

Dosyalar