From Euclidean triangles to the hyperbolic plane

dc.authoridSaglam, Ismail/0000-0002-1283-6396
dc.contributor.authorSaglam, Ismail
dc.date.accessioned2025-01-06T17:37:46Z
dc.date.available2025-01-06T17:37:46Z
dc.date.issued2022
dc.description.abstractWe introduce a model of the hyperbolic plane which arises from Thurston's ideas on best Lipschitz maps between surfaces. More precisely, we apply Thurston's theory to the space of Euclidean triangles. We prove that the Lipschitz constant of the unique affine map between two Euclidean triangles induces a metric on the set of isometry classes of the triangles with area 1/2. We then prove that this space of triangles together with 2 times its natural metric is isometric to the hyperbolic plane. Our construction is simple and natural and it makes relations between several geometrical ideas. (C) 2021 Elsevier GmbH. All rights reserved.
dc.description.sponsorshipTUBIITAK, Turkey
dc.description.sponsorshipThe question addressed in the present paper is suggested by Athanase Papadopoulos. The author is grateful to him for his remarks and comments. This work is supported by TUBIITAK, Turkey.
dc.identifier.doi10.1016/j.exmath.2021.10.003
dc.identifier.endpage253
dc.identifier.issn0723-0869
dc.identifier.issn1878-0792
dc.identifier.issue2
dc.identifier.scopus2-s2.0-85119607903
dc.identifier.scopusqualityQ3
dc.identifier.startpage249
dc.identifier.urihttps://doi.org/10.1016/j.exmath.2021.10.003
dc.identifier.urihttps://hdl.handle.net/20.500.14669/2345
dc.identifier.volume40
dc.identifier.wosWOS:000809967600003
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier Gmbh
dc.relation.ispartofExpositiones Mathematicae
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241211
dc.subjectEuclidean triangles
dc.subjectLipschitz maps
dc.subjectHyperbolic plane
dc.titleFrom Euclidean triangles to the hyperbolic plane
dc.typeArticle

Dosyalar