Surface-governed electrochemical hydrogenation in FeNi-based metallic glass
[ X ]
Tarih
2020
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
The hydrogenation and oxide formation behavior of Fe-Ni-based metallic glasses (MGs), where measurements by the conventional gas-solid reaction method are difficult, is analyzed by a two-step approach: chronoamperometry followed by cyclic voltammetry (CA + CV). We introduce a concept of effective volume by measuring the thickness of the region where the hydrogen and hydroxyl ion interactions with Fe-based MG take place, which is characterized by high-angle annular dark-field scanning transmission electron microscopy. A very constant film thickness influenced by the OH- and H+ is confirmed by TEM, where the chemical homogeneity is maintained within this region. The weight percent of hydrogen and the corresponding hydrogen-to-metal ratio are determined as 1.16% and 0.56, respectively. When compared to previous studies conducted by the electrochemical- permeation method, the H/M ratio is found to be an order of magnitude larger. Electrochemical impedance spectroscopy (EIS) and subsequent equivalent circuit modeling (ECM) of the tested ribbons resolve the surface-diffusion processes for hydride formation and oxidation kinetics. This contribution provides a different perspective for the design and study of low-cost and high-performance amorphous nanofilms for hydrogenenergy applications, particularly when the common gas-adsorption methods are problematic.
Açıklama
Anahtar Kelimeler
Metallic glass, Hydrogen-to-metal ratio, Electrosorption, Gas-solid reactions, High-angle annular dark-field scanning transmission electron microscopy, Electrochemical impedance spectroscopy
Kaynak
Journal of Power Sources
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
475