Adaptive neuro-fuzzy inference system combined with genetic algorithm to improve power extraction capability in fuel cell applications

[ X ]

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Sci Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

This study introduces an improved ANFIS based MPPT method to maximize the power extraction capability of the FC-connected system. The proposed method is tested in a stand-alone system that consists of an FC in the power rating of 1.9 kW, a boost dc-dc converter, local consumer load, and processor unit. The energy transfer between FC and load is handled through the adjustment of a duty cycle of the dc-dc converter. In this context, the output voltage of FC is controlled by the duty cycle to track the MPP. The proposed method called GA-ANFIS computes optimum reference voltages to control the FC output voltage optimally. The GA-ANFIS uses a reduced-size training dataset extracted by GA to train the ANFIS in comparison with conventional ANFIS. Unlike the existing methods, the proposed method tracks the MPP by merely monitoring FC voltage during operation. Besides, it performs precise MPP tracking by considering pressure & temperature variations. Thus, the proposed method provides reduced computational load owing to its current features. The performance of the proposed method compared with the traditional methods like ANFIS and PI. The power extraction ratings and efficiency values validate the viability and effectiveness of the proposed method (>98%). (c) 2021 Elsevier Ltd. All reserved.

Açıklama

Anahtar Kelimeler

GA-ANFIS, Fuel cell, Maximum power extraction, Optimization, Operational changes

Kaynak

Journal of Cleaner Production

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

299

Sayı

Künye