Estimation of crack propagation in polymer electrolyte membrane fuel cell under vibration conditions
dc.authorid | Calik, Ahmet/0000-0001-7425-4546 | |
dc.authorid | Yildirim, Sefa/0000-0002-9204-5868 | |
dc.authorid | Tosun, Erdi/0000-0001-5733-2047 | |
dc.contributor.author | Calik, Ahmet | |
dc.contributor.author | Yildirim, Sefa | |
dc.contributor.author | Tosun, Erdi | |
dc.date.accessioned | 2025-01-06T17:44:02Z | |
dc.date.available | 2025-01-06T17:44:02Z | |
dc.date.issued | 2017 | |
dc.description | 1st International Mediterranean Science and Engineering Congress (IMSEC) -- OCT 26-28, 2016 -- Adana, TURKEY | |
dc.description.abstract | In transportation applications, the main reasons of mechanical damage in polymer electrolyte membrane fuel cell (PEMFC) are road-induced vibrations and impact loads. The most vulnerable place of these cells is the interface between membrane and catalyst layer in the membrane electrode assembly (MEA). Hence, studies on mechanical strength of PEMFC should focus on that interface. The objective of present study lies in the fact that employing a prediction method to investigate the damage propagation behavior of vibration applied PEMFC using artificial neural network (ANN). The data available in the literature are used to constitute an ANN model. Three-layer model; input, hidden and output, are used for construction of ANN structure. Initial delamination length (a), amplitude (A), frequency (omega) and time (t) are used as input neurons whereas delamination length is output. Levenberg-Marquardt algorithm is selected as learning algorithm. On the other hand, number of hidden layer neuron is decided with the use of different neuron, numbers by trial and error method. It is concluded that prediction capability of ANN model is in allowable limits and model can be suggested as efficient way of delamination length estimation. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved. | |
dc.identifier.doi | 10.1016/j.ijhydene.2017.02.119 | |
dc.identifier.endpage | 23351 | |
dc.identifier.issn | 0360-3199 | |
dc.identifier.issn | 1879-3487 | |
dc.identifier.issue | 36 | |
dc.identifier.scopus | 2-s2.0-85015317080 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 23347 | |
dc.identifier.uri | https://doi.org/10.1016/j.ijhydene.2017.02.119 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14669/2895 | |
dc.identifier.volume | 42 | |
dc.identifier.wos | WOS:000412033800074 | |
dc.identifier.wosquality | Q1 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Pergamon-Elsevier Science Ltd | |
dc.relation.ispartof | International Journal of Hydrogen Energy | |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.snmz | KA_20241211 | |
dc.subject | Polymer electrolyte membrane fuel cell | |
dc.subject | Mechanical vibration | |
dc.subject | Crack propagation | |
dc.subject | Artificial neural network | |
dc.title | Estimation of crack propagation in polymer electrolyte membrane fuel cell under vibration conditions | |
dc.type | Conference Object |