Multilayer crystal-amorphous Pd-based nanosheets on Si/SiO2 with interface-controlled ion transport for efficient hydrogen storage
dc.contributor.author | Sarac, Baran | |
dc.contributor.author | Ivanov, Yurii P. | |
dc.contributor.author | Karazehir, Tolga | |
dc.contributor.author | Mühlbacher, Marlene | |
dc.contributor.author | Sarac, A. Sezai | |
dc.contributor.author | Greer, A. Lindsay | |
dc.contributor.author | Eckert, Jürgen | |
dc.date.accessioned | 2025-01-06T17:30:10Z | |
dc.date.available | 2025-01-06T17:30:10Z | |
dc.date.issued | 2022 | |
dc.description.abstract | This contribution shows an unusually high hydrogen storage of multilayer amorphous (A)-crystalline (C) Pd–Si based nanosheets when stacked in the right order. Samples with A/C/A/C/A stacking sequence exhibit 40 and 12 times larger hydrogen sorption than monolithic crystalline and amorphous samples, respectively. The maximum capacitance calculated from the fitting of electrochemical impedance measurements of the same sample is twice larger than that of the conventional polycrystalline Pd films of similar thickness. Five times higher diffusion coefficient calculated from modified Cottrell equation is obtained compared to specimens with C/A/C/A/C stacking. For the A/C/A/C/A multilayers, nanobubbles with diameters of 1–2 nm are homogeneously distributed at Si/SiO2 interface, and PdHx crystal formation in these regions confirms hydrogen-metal interactions. Furthermore, corrosion-resistant amorphous top layer permits larger amounts of hydrogen ion transfer to inner layers. Thus, hydrogen storage and production can be enhanced by smart design of multilayers targeted for proton exchange membrane electrolysis or fuel cells. © 2021 Hydrogen Energy Publications LLC | |
dc.description.sponsorship | Horizon 2020 Framework Programme, H2020, (695487); European Research Council, ERC, (ERC-2013-ADG-340025); Ministry of Education and Science of the Russian Federation, Minobrnauka, (K2-2020-046); Ministry of Science and Higher Education of the Russian Federation, (0657-2020-0005) | |
dc.identifier.doi | 10.1016/j.ijhydene.2021.12.040 | |
dc.identifier.endpage | 6788 | |
dc.identifier.issn | 0360-3199 | |
dc.identifier.issue | 10 | |
dc.identifier.scopus | 2-s2.0-85121789812 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 6777 | |
dc.identifier.uri | https://doi.org/10.1016/j.ijhydene.2021.12.040 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14669/1483 | |
dc.identifier.volume | 47 | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Elsevier Ltd | |
dc.relation.ispartof | International Journal of Hydrogen Energy | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.snmz | KA_20241211 | |
dc.subject | Electrochemistry | |
dc.subject | HRSTEM | |
dc.subject | Hydrogen storage | |
dc.subject | Metallic glass | |
dc.subject | Multilayer | |
dc.subject | Palladium-silicon | |
dc.title | Multilayer crystal-amorphous Pd-based nanosheets on Si/SiO2 with interface-controlled ion transport for efficient hydrogen storage | |
dc.type | Article |