Multilayer crystal-amorphous Pd-based nanosheets on Si/SiO2 with interface-controlled ion transport for efficient hydrogen storage

[ X ]

Tarih

2022

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

This contribution shows an unusually high hydrogen storage of multilayer amorphous (A)-crystalline (C) Pd–Si based nanosheets when stacked in the right order. Samples with A/C/A/C/A stacking sequence exhibit 40 and 12 times larger hydrogen sorption than monolithic crystalline and amorphous samples, respectively. The maximum capacitance calculated from the fitting of electrochemical impedance measurements of the same sample is twice larger than that of the conventional polycrystalline Pd films of similar thickness. Five times higher diffusion coefficient calculated from modified Cottrell equation is obtained compared to specimens with C/A/C/A/C stacking. For the A/C/A/C/A multilayers, nanobubbles with diameters of 1–2 nm are homogeneously distributed at Si/SiO2 interface, and PdHx crystal formation in these regions confirms hydrogen-metal interactions. Furthermore, corrosion-resistant amorphous top layer permits larger amounts of hydrogen ion transfer to inner layers. Thus, hydrogen storage and production can be enhanced by smart design of multilayers targeted for proton exchange membrane electrolysis or fuel cells. © 2021 Hydrogen Energy Publications LLC

Açıklama

Anahtar Kelimeler

Electrochemistry, HRSTEM, Hydrogen storage, Metallic glass, Multilayer, Palladium-silicon

Kaynak

International Journal of Hydrogen Energy

WoS Q Değeri

Scopus Q Değeri

Q1

Cilt

47

Sayı

10

Künye