Electrocatalytic Behavior of Hydrogenated Pd-Metallic Glass Nanofilms: Butler-Volmer, Tafel, and Impedance Analyses

dc.authoridSarac, Baran/0000-0002-0130-3914
dc.authoridEckert, Jurgen/0000-0003-4112-3181
dc.authoridSarac, A.Sezai/0000-0001-7513-1740
dc.contributor.authorSarac, Baran
dc.contributor.authorKarazehir, Tolga
dc.contributor.authorMuehlbacher, Marlene
dc.contributor.authorSarac, A. Sezai
dc.contributor.authorEckert, Juergen
dc.date.accessioned2025-01-06T17:43:34Z
dc.date.available2025-01-06T17:43:34Z
dc.date.issued2020
dc.description.abstractElectrocatalytic activity and sorption behavior of hydrogen in nanosized Pd-Si-(Cu) metallic glass thin film and Pd thin film electrodes sputtered on a Si/SiO2 substrate were investigated by linear sweep voltammetry, cyclic voltammetry, and electrochemical impedance spectroscopy. The electrode MG4 (Pd69Si18Cu13) exhibits the best performance with the highest electrocatalytic activity in the hydrogen evolution region with less than half of the Tafel slope of Pd thin film of the same thickness and lowest overpotential at 10 mA cm(-2). A new approach has been adopted by a nonlinear fitting of the entire region of the polarization curve (far- and near-equilibrium cathodic and anodic regions) to the Butler-Volmer model. a parameter is lowest for the MG2 electrode (Pd79Si16Cu5), marking that nonequilibrium conditions change the reaction kinetics. Together with MG2, MG4 shows the lowest Bode magnitude values for hydrogen sorption and evolution regions, indicating that the bonding and release of hydrogen atoms to the electrode is easier. MG4 electrode shows a dramatic decrease of the overpotential after 100 cycles, yielding an increase in hydrogen activity. Besides, MG4 exhibits the sharpest current density drop in the HER region in cyclic voltammetry compared with other MG and Pd electrodes, indicating higher electrocatalytic activity towards hydrogen evolution. The findings highlight the influence of the selected metallic glasses for the design and development of metal catalysts with higher sorption kinetics and/or electrocatalytic turnover.
dc.description.sponsorshipEuropean Research Council [ERC-2013-ADG-340025]
dc.description.sponsorshipThis work was supported by the European Research Council under the Advanced Grant INTELHYB-Next Generation of Complex Metallic Materials in Intelligent Hybrid Structures (Grant No. ERC-2013-ADG-340025).
dc.identifier.doi10.1007/s12678-019-00572-z
dc.identifier.endpage109
dc.identifier.issn1868-2529
dc.identifier.issn1868-5994
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85077164082
dc.identifier.scopusqualityQ2
dc.identifier.startpage94
dc.identifier.urihttps://doi.org/10.1007/s12678-019-00572-z
dc.identifier.urihttps://hdl.handle.net/20.500.14669/2718
dc.identifier.volume11
dc.identifier.wosWOS:000508387800010
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofElectrocatalysis
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241211
dc.subjectMetallic glass
dc.subjectThin film
dc.subjectElectrocatalysis
dc.subjectTafel plot
dc.subjectButler-Volmer model
dc.subjectElectrochemical impedance spectroscopy
dc.titleElectrocatalytic Behavior of Hydrogenated Pd-Metallic Glass Nanofilms: Butler-Volmer, Tafel, and Impedance Analyses
dc.typeArticle

Dosyalar