Origin of Electrocatalytic Activity in Amorphous Nickel-Metalloid Electrodeposits

dc.contributor.authorSarac, Baran
dc.contributor.authorKarazehir, Tolga
dc.contributor.authorMicusik, Matej
dc.contributor.authorHalkali, Celine
dc.contributor.authorGutnik, Dominik
dc.contributor.authorOmastova, Maria
dc.contributor.authorSarac, A. Sezai
dc.date.accessioned2025-01-06T17:30:11Z
dc.date.available2025-01-06T17:30:11Z
dc.date.issued2021
dc.description.abstractIn transition metal-based alloys, the nonlinearity of the current at large cathodic potentials reduces the credibility of the linear Tafel slopes for the evaluation of electrocatalytic hydrogen activity. High-precision nonlinear fitting at low current densities describing the kinetics of electrochemical reactions due to charge transfer can overcome this challenge. To show its effectiveness, we introduce a glassy alloy with a highly asymmetric energy barrier: amorphous NiP electrocoatings (with different C and O inclusions) via changing the applied DC and pulsed current and NaH2PO2 content. The highest hydrogen evolution reaction (HER) activity with the lowest cathodic transfer coefficient ? = 0.130 with high J0 = -1.07 mA cm-2 and the largest surface areas without any porosity are observed for the pulsed current deposition. The calculated ? has a direct relation with morphology, composition, chemical state and coating thickness defined by the electrodeposition conditions. Here, a general evaluation criterion with practicality in assessment and high accuracy for electrocatalytic reactions applicable to different metallic alloy systems is presented. © 2021 American Chemical Society.
dc.description.sponsorshipSlovenská Akadémia Vied, SAV, (313021T081); Slovenská Akadémia Vied, SAV; European Research Council, ERC, (ERC-2013-ADG-340025); European Research Council, ERC; Ministry of Education and Science of the Russian Federation, Minobrnauka, (K2-2020-046); Ministry of Education and Science of the Russian Federation, Minobrnauka; European Regional Development Fund, ERDF
dc.identifier.doi10.1021/acsami.1c03007
dc.identifier.endpage23701
dc.identifier.issn1944-8244
dc.identifier.issue20
dc.identifier.pmid33982559
dc.identifier.scopus2-s2.0-85106365122
dc.identifier.scopusqualityQ1
dc.identifier.startpage23689
dc.identifier.urihttps://doi.org/10.1021/acsami.1c03007
dc.identifier.urihttps://hdl.handle.net/20.500.14669/1502
dc.identifier.volume13
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.language.isoen
dc.publisherAmerican Chemical Society
dc.relation.ispartofACS Applied Materials and Interfaces
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241211
dc.subjectamorphous alloys
dc.subjectButler-Volmer equation
dc.subjectelectrodeposition
dc.subjectenergy-dispersive X-ray analysis
dc.subjectlinear sweep voltammetry
dc.subjectmorphology
dc.subjectnickel phosphide
dc.subjectRaman spectroscopy
dc.titleOrigin of Electrocatalytic Activity in Amorphous Nickel-Metalloid Electrodeposits
dc.typeArticle

Dosyalar