Effective Methanol Oxidation with Platinum Nanoparticles-Decorated Poly(2-bromomethyl-2-methyl-3,4-propylenedioxythiophene)-Coated Glassy Carbon Electrode

dc.authoridSarac, Baran/0000-0002-0130-3914
dc.authoridSarac, A.Sezai/0000-0001-7513-1740
dc.authoridEckert, Jurgen/0000-0003-4112-3181
dc.contributor.authorKarazehir, Tolga
dc.contributor.authorSarac, Baran
dc.contributor.authorGilsing, Hans-Detlev
dc.contributor.authorEckert, Juergen
dc.contributor.authorSarac, A. Sezai
dc.date.accessioned2025-01-06T17:37:12Z
dc.date.available2025-01-06T17:37:12Z
dc.date.issued2021
dc.description.abstractHere, we developed a porous network of bromomethyl-substituted 3,4-propylenedioxythiophene polymer using a simple and efficient technique of electrochemical deposition used as conductive support for methanol oxidation. Platinum nanoparticles (PtNPs) are well dispersed and decorated on a high surface area of electrochemically deposited Poly(2-bromomethyl-2-methyl-3,4-propylenedioxythiophene (PProDOT-Br) on a glassy carbon electrode (GCE). A thin film of PProDOT-Br acts as a supporting matrix for deposition of PtNPs and improves the interfacial properties between electrode and electrolyte. The PtNPs-decorated PProDOT-Br (Pt/PProDOT-Br) samples were characterized by X-ray diffraction, Fourier transform infrared attenuated total reflectance spectroscopy, atomic force microscopy, and scanning electron microscopy. Furthermore, the electrocatalytic performance of Pt/PProDOT-Br on GCE for methanol oxidation was assessed by cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy measurements. The findings suggest that the use of Pt/PProDOT-Br/GCE assemblies for efficient methanol oxidation in alkaline media with a small intermediate poisoning is promising for applications as anode material in DMFCs, which should be attributed to the PProDOT-Br support providing a larger surface area with porous nature and enabling the adsorption of more CH3OH for further oxidation. The developed porous network PProDOT-Br with high capacitance may also have large potential in supercapacitor applications.
dc.identifier.doi10.1149/1945-7111/ac1b01
dc.identifier.issn0013-4651
dc.identifier.issn1945-7111
dc.identifier.issue8
dc.identifier.scopus2-s2.0-85113288012
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1149/1945-7111/ac1b01
dc.identifier.urihttps://hdl.handle.net/20.500.14669/2122
dc.identifier.volume168
dc.identifier.wosWOS:000685545700001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElectrochemical Soc Inc
dc.relation.ispartofJournal of The Electrochemical Society
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241211
dc.subjectConducting polymer
dc.subjectPProDOT
dc.subjectElectrodeposition
dc.subjectmethanol oxidation
dc.subjectPlatinum nanoparticles
dc.titleEffective Methanol Oxidation with Platinum Nanoparticles-Decorated Poly(2-bromomethyl-2-methyl-3,4-propylenedioxythiophene)-Coated Glassy Carbon Electrode
dc.typeArticle

Dosyalar