A numerical investigation of combined effect of nanofluids and impinging jets for different parameter
[ X ]
Tarih
2019
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Gazi Univ, Fac Engineering Architecture
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In this study; enhancement of heat transfer on a high heat-flux surface is investigated numerically by using nanofluids with impinging jet technique. Heat transfer from flat copper surface was studied for different Reynolds number (Re=12000, 14000, 16000, 18000), different particle diameter of nanofluid (Dp=10nm, 20nm, 40nm, 80nm), different volume fraction of nanofluid (phi=% 2, % 4, % 6, % 8), and different types of nanofluids (CuO-water, NiO-water, Cu-water, pure water). The low Reynolds number k-e turbulence model of the PHOENICS CFD program was used in the study. As a result; increasing Re number from 12000 to 18000 resulted in an increase of 28% on average Nusselt number. It has been obtained that decreasing particle diameter from 80nm to 10nm causes an increase of 13.20% on average Nusselt number. It has been determined that increasing volume ration more than 4% does not cause a significant increase in heat transfer. In the case of using different types of nanofluids, the best heat transfer performance is obtained when Cuwater nanofluid is used. Using Cu-water nanofluid showed an enhancement of 8.3% on average Nusselt number compared to pure water. Moreover; it has been shown that the low Reynolds number k-epsilon turbulence model can well represent the temperature distribution and flow properties.
Açıklama
Anahtar Kelimeler
Impinging jet, nanofluid, heat transfer, computational fluid dynamics
Kaynak
Journal of The Faculty of Engineering and Architecture of Gazi University
WoS Q Değeri
Q4
Scopus Q Değeri
Q2
Cilt
34
Sayı
3