Stock price prediction using hybrid soft computing models incorporating parameter tuning and input variable selection
[ X ]
Tarih
2019
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer London Ltd
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
Over the years, high-dimensional, noisy, and time-varying natures of the stock markets are analyzed to carry out accurate prediction. Particularly, speculators and investors are understandably eager to accurately predict stock price since millions of dollars flow through the stock markets. At this point, soft computing models have empowered them to capture the data patterns and characteristics of stock markets. However, one of the open problems in soft computing models is how to systematically determine architecture of models for given applications. In this study, Harmony Search is utilized to optimize the architecture of Neural Network, Jordan Recurrent Neural Network, Extreme Learning Machine, Recurrent Extreme Learning Machine, Generalized Linear Model, Regression Tree, and Gaussian Process Regression for 1-, 2-, 3-, 5-, 7-, and 10-day-ahead stock price prediction. The experimental results show worthy findings of stock market behavior over different prediction terms and stocks. This study also helps researchers understand which prediction model performed the best and how different conditions affect the prediction accuracy of the models. Proposed hybrid models can be successfully used by speculators and investors to make the investment or to hedge against potential risk in stock markets.
Açıklama
Anahtar Kelimeler
Jordan Recurrent Neural Network, Recurrent Extreme Learning Machine, Generalized Linear Model, Regression Tree, Gaussian Process Regression, Stock price prediction
Kaynak
Neural Computing & Applications
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
31
Sayı
2