HBDFA: An intelligent nature-inspired computing with high-dimensional data analytics
[ X ]
Tarih
2024
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
The rapid development of data science has led to the emergence of high-dimensional datasets in machine learning. The curse of dimensionality is a significant problem caused by high-dimensional data with a small sample size. This paper proposes a novel hybrid binary dragonfly algorithm (HBDFA) in which a distance-based similarity evaluation algorithm is embedded before the dragonfly algorithm (DA) searching behavior to select the most discriminating features. The two-step feature selection mechanism of HBDFA enables the method to explore the feature space reduced by the distance-based similarity evaluation algorithm. The model was evaluated on two datasets. The first dataset contained 200 reports from 4 evenly distributed categories of Daily Mail Online: COVID-19, economy, science, and sports. The second dataset was the publicly available Spam dataset. The proposed model is compared with binary versions of four popular metaheuristic algorithms. The model achieved an accuracy rate of 96.75% by reducing 66.5% of the top 100 features determined on the first dataset. Results on the Spam dataset reveal that HBDFA gives the best classification results with over 95% accuracy. The experimental results show the superiority of HBDFA in searching high-dimensional data, improving classification results, and reducing the number of selected features.
Açıklama
Anahtar Kelimeler
Binary dragonfly algorithm, COVID-19, Text mining, Nature inspired algorithms, Feature selection
Kaynak
Multimedia Tools and Applications
WoS Q Değeri
Q2
Scopus Q Değeri
Q1
Cilt
83
Sayı
4