Initialization of MLP Parameters Using Deep Belief Networks for Cancer Classification

dc.contributor.authorDinç, Barış
dc.contributor.authorKaya, Yasin
dc.contributor.authorYıldırım, Serdar
dc.date.accessioned2025-01-06T17:29:59Z
dc.date.available2025-01-06T17:29:59Z
dc.date.issued2021
dc.description.abstractDeep belief network (DBN) is deep neural network structure consisting of a collection of restricted Boltzmann machine (RBM). RBM is two-layered simple neural networks which are formed by a visible and hidden layer, respectively. Each visible layer receives a lower-level feature set learned by previous RBM and passes it through to top layers turning them into a more complex feature structure. In this study, the proposed method is to feed the training parameters learned by DBN to multilayer perceptron as initial weights instead of starting them from random points. The obtained results on the bioinformatics cancer dataset show that using initial weights trained by DBN causes more successful classification results than starting from random parameters. The test accuracy using proposed method increased from 77.27 to 95.45%. © 2021, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
dc.identifier.doi10.1007/978-981-33-4582-9_9
dc.identifier.endpage118
dc.identifier.issn2367-4512
dc.identifier.scopus2-s2.0-85106437946
dc.identifier.scopusqualityQ3
dc.identifier.startpage109
dc.identifier.urihttps://doi.org/10.1007/978-981-33-4582-9_9
dc.identifier.urihttps://hdl.handle.net/20.500.14669/1435
dc.identifier.volume61
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer Science and Business Media Deutschland GmbH
dc.relation.ispartofLecture Notes on Data Engineering and Communications Technologies
dc.relation.publicationcategoryKitap Bölümü - Uluslararası
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241211
dc.subjectClassification
dc.subjectDeep belief networks
dc.subjectMultilayer perceptron
dc.subjectRestricted boltzmann machine
dc.titleInitialization of MLP Parameters Using Deep Belief Networks for Cancer Classification
dc.typeBook Chapter

Dosyalar