Heat transfer analysis of high heat flux moving surface with nanofluids and impinging jets
[ X ]
Tarih
2021
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bu çalışmada, yüksek ısı akılı hareketli bakır bir plakadan olan ısı transferinin, nanoakışkanların çarpan akışkan jet tekniği ile oluşturduğu müşterek etki sayısal olarak incelenmiştir. Çalışmanın ilk aşamasında, literatürdeki mevcut çalışmaları doğrulamak amacıyla temel akışkan olarak Cu-H2O nanoakışkanın hareketsiz bir plakada farklı Reynolds sayılarında ve farklı parçacık çaplarnda ısı transfer analizi yapılmıştır. Model sonuçları literatürdeki mevcut deneysel çalışmalarla karşılaştırılmış ve doğrulanmıştır.İkinci aşamasında ise, hem hareketli hem de hareketsiz bir plakada Al2O3-H2O nanoakışkanı kullanılarak farklı parçacık çaplarında, farklı plaka hızlarında, farklı hacim oranlarında ısı transfer analizi yapılmıştır. Ayrıca hareketli bakır plakada farklı tip nanoakışkan kullanılması durumunda ısı transferine olan etki de incelenmiştir.Sayısal çalışmada PHOENICS HAD programınn düşük Re sayılı k-? türbülans modeli kullanılmıştır. Bu model, sınırlandırılmış çarpan jetlerin modellenmesinde yaygın bir şekilde kullanıldığı için tercih edilmiştir. Sonuç olarak; Reynoldas sayısının Re=12000-18000 değerine arttırılması durumunda ortalama Nusselt sayısında %28 oranında bir artış sağlandığı, nanoparçaçık çapı Dp=40nm'den 10nm'ye azaltığında ortalama Nusselt sayısında %9,1'lik artış sağlandığı, plaka hızı Vplaka=0-6 m/s aralığında arttırıldığında ortalama Nusselt sayısında %88,9 oranında artış sağlandığı, hacimsel oran ?=0,5-2,0 aralığında arttırıldığında ortalama Nusselt sayısında %2,5'lik artış sağlandığı, farklı nanoakışkanların karşılaştırılması durumunda ise, en iyi ısı transferi performansının Cu-H2O nanoakışkanın gösterdiği belirlenmiştir. Anahtar Kelimeler: çarpan akışkan jet, hareketli plaka, HAD, ısı transferi, nanoakışkan
In this study, the common effect of heat transfer from a high heat flux moving copper plate with the impinging fluid jet technique of nanofluids was examined numerically. In the first phase of the study, heat transfer analysis of as the basic fluid Cu-H2O nanofluids in different Reynolds numbers and different particle diameters was performed on a stationary plate to confirm the current studies in the literature. The model results were compared and verified with existing experimental studies in the literature. In the second phase, heat transfer analysis was performed at different particle diameters, different plate velocity, and different volume ratios using Al2O3-H2O nanofluid on both a moving and stationary plate. Furthermore, the effect of heat transfer was examined in the case of using different types of nanofluids in the moving copper plate. In the numerical study, the low Re numbered k-? turbulence model of PHOENICS CFD program was used. This model is preferred because it is widely used in the modelling of confined impinging jets. According to the results of the study, if the number of Reynolds is increased to Re=12000-18000, the average number of Nusselts is increased by 28%, and when the nanoparticle diameter is reduced from Dp=40nm to 10nm, the average number of Nusselts increases by 9.1%, when the plate velocity was increased in the range of Vplate=0-6 m/s, the number of average Nusselts increased by 88.9%, the volumetric ratio is increased by 2.5% in the range of ?=0.5-2.0, and in case of comparing different nanofluids were compared, the best heat transfer performance was determined by Cu-H2O nanofluid. Keywords: CFD, heat transfer, impinging fluid jet, moving plate, nanofluid
In this study, the common effect of heat transfer from a high heat flux moving copper plate with the impinging fluid jet technique of nanofluids was examined numerically. In the first phase of the study, heat transfer analysis of as the basic fluid Cu-H2O nanofluids in different Reynolds numbers and different particle diameters was performed on a stationary plate to confirm the current studies in the literature. The model results were compared and verified with existing experimental studies in the literature. In the second phase, heat transfer analysis was performed at different particle diameters, different plate velocity, and different volume ratios using Al2O3-H2O nanofluid on both a moving and stationary plate. Furthermore, the effect of heat transfer was examined in the case of using different types of nanofluids in the moving copper plate. In the numerical study, the low Re numbered k-? turbulence model of PHOENICS CFD program was used. This model is preferred because it is widely used in the modelling of confined impinging jets. According to the results of the study, if the number of Reynolds is increased to Re=12000-18000, the average number of Nusselts is increased by 28%, and when the nanoparticle diameter is reduced from Dp=40nm to 10nm, the average number of Nusselts increases by 9.1%, when the plate velocity was increased in the range of Vplate=0-6 m/s, the number of average Nusselts increased by 88.9%, the volumetric ratio is increased by 2.5% in the range of ?=0.5-2.0, and in case of comparing different nanofluids were compared, the best heat transfer performance was determined by Cu-H2O nanofluid. Keywords: CFD, heat transfer, impinging fluid jet, moving plate, nanofluid
Açıklama
Fen Bilimleri Enstitüsü, Makine Mühendisliği Ana Bilim Dalı
Anahtar Kelimeler
Makine Mühendisliği, Mechanical Engineering