DCNA: A tool for differential co-expression network analysis of gene expression data
[ X ]
Tarih
2021
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Bağlama özgü durumlardaki (hastalık ve sağlık durumunda veya kimyasal uygulanan ve uygulanmayan durumda) dokuların gen ifadesi değerlerinin karşılaştırılmasına dayanan ve iki farklı durumdaki gen anlatım seviyelerinin korelasyon ilişkilerine dayanarak, farklılaşan ortak gen ifadesi analizlerinin yapıldığı bir metot geliştirildi. Oluşturulan ağ yapılarında birbirleriyle yüksek etkileşime sahip gen kümeleri (modüller) elde edildi. Bu tezde, araştırma grubumuza ait olan yeni bir algoritma kullanılarak, DCNA olarak adlandırılan bir web-tabanlı araç geliştirildi. Kodlar ve ek veriler http://www.github.com/tyasird/differial-coexpression-network-analysis adresinde mevcuttur. Çalışmanın en önemli noktası, araştırmacıların kodlama ile zaman kaybı yaşamadan, gen ekspresyon verilerini kolayca analiz edebilecekleri kullanıcı dostu bir web tabanlı aracın tasarlanmasıdır. Araştırmacılar, DCNA aracına http://dcna.computationalbiology.org/ adresinden erişebilir. Bu metot ile mide kanseri mikro dizi veri setleri vaka çalışması olarak kullanıldı ve mide kanserine özgü korelasyon ağları oluşturuldu. İleri istatistiksel yöntemler ve algoritmalar ile geliştirilen DCNA web-tabanlı araç sayesinde anlamlı gen modülleri belirlendi. Geliştirilen web-tabanlı araç ile bulunan hastalığa özgü aday gen modüllerinin, hastalığının prognozu ve tedavisine yönelik stratejiler geliştirilmesine yardımcı olacağını öne sürüyoruz.
A method was developed based on comparing gene expressions of tissues in two context-specific conditions (i.e. disease and normal samples or chemical applied and not applied samples), and differential-co-expression analysis was performed based on comparing the correlation relationships between the expression levels of genes in both states. Gene clusters (modules) with high interaction with each other in the created network structures were obtained. In this thesis, the web-based tool named DCNA was developed by using the new algorithm belonging to our research group. Codes and supplementary data are available in http://www.github.com/tyasird/differential-coexpression-network-analysis. Besides, the most important point of the study, a user-friendly web-based tool was designed, where researchers can easily analyze gene expression data (microarray & RNA-seq) without wasting time with coding. DCNA is accessible at http://dcna.computationalbiology.org/. Herewith method, gastric cancer microarray datasets were used as a case study and a cancer-specific correlation network was constructed. Significant gene modules were determined with the help of the DCNA web-based tool. We assert that disease-specific candidate gene modules found by the DCNA web-based tool will help to develop strategies for the prognosis and treatment of the disease.
A method was developed based on comparing gene expressions of tissues in two context-specific conditions (i.e. disease and normal samples or chemical applied and not applied samples), and differential-co-expression analysis was performed based on comparing the correlation relationships between the expression levels of genes in both states. Gene clusters (modules) with high interaction with each other in the created network structures were obtained. In this thesis, the web-based tool named DCNA was developed by using the new algorithm belonging to our research group. Codes and supplementary data are available in http://www.github.com/tyasird/differential-coexpression-network-analysis. Besides, the most important point of the study, a user-friendly web-based tool was designed, where researchers can easily analyze gene expression data (microarray & RNA-seq) without wasting time with coding. DCNA is accessible at http://dcna.computationalbiology.org/. Herewith method, gastric cancer microarray datasets were used as a case study and a cancer-specific correlation network was constructed. Significant gene modules were determined with the help of the DCNA web-based tool. We assert that disease-specific candidate gene modules found by the DCNA web-based tool will help to develop strategies for the prognosis and treatment of the disease.
Açıklama
Fen Bilimleri Enstitüsü, Biyomühendislik Ana Bilim Dalı, Biyoinformatik ve Sistem Biyolojisi Bilim Dalı
Anahtar Kelimeler
Biyomühendislik, Bioengineering ; Biyoteknoloji