Sinüs Kosinüs Algoritması ile Çok Katmanlı Algılayıcı Eğitimi
[ X ]
Tarih
2021
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Yapay sinir ağlarının (YSA) eğitilmeleri açısından, meta-sezgisel yöntemlerin geleneksel, eğim tabanlı yöntemlere göre üstünlükleri, bilimsel yazındaki çok sayıda çalışma ile gösterilmiştir. Bu çalışmanın amacı, bir YSA türü olan Çok Katmanlı Algılayıcı (ÇKA) eğitimindeki başarım açısından, bir meta-sezgisel en iyileştirme yöntemi olan Sinüs Kosinüs Algoritması (SKA) ile iki başka yöntemin (parçacık sürü en iyileştirmesi (PSEİ) ve yarasa algoritması (YA)) karşılaştırılmasıdır. Bütün yöntemlerin, Kaliforniya Üniversitesi, Irvine, Yapay Öğrenme Kaynağı üzerinden alınan beş hastalık ile ilgili veri kümesinde (göğüs kanseri, diyabet, karaciğer, omurga ve parkinson) ikili sınıflandırmadaki başarım değerlendirmeleri yapılmıştır. Deney sonuçlarında, SKA ile eğitilen ÇKA’lar %97’ye varan yüksek doğruluk oranlarına ulaşmıştır. Yöntem, YA’dan büyük çoğunlukla daha yüksek, PSEİ’den büyük çoğunlukla daha düşük başarım göstermiştir. PSEİ yöntemi genel olarak daha yüksek başarı gösterse de, SKA yöntemi de bir veri kümesinde en yüksek, kalan veri kümelerinin biri dışında hepsinde ikinci en yüksek eğitim başarımını göstermiştir. İncelenen yöntem arama uzaylarında, hem yüksek keşfetme ve yerel en iyiden kaçınma, hem de amaçlanan değerlere yüksek yakınsama hızları göstermektedir. Bu sonuçlar, SKA’nın ÇKA eğitiminde yetkin ve etkili olabildiğini ortaya koymaktadır.
Açıklama
Anahtar Kelimeler
Yapay Sinir Ağları, Çok Katmanlı Algılayıcı, Meta-sezgisel Yöntemler, Sinüs Kosinüs Algoritması
Kaynak
Avrupa Bilim ve Teknoloji Dergisi
WoS Q Değeri
Scopus Q Değeri
Cilt
0
Sayı
27