Ultrahigh hydrogen-sorbing palladium metallic-glass nanostructures

dc.contributor.authorSarac, Baran
dc.contributor.authorIvanov, Yurii P.
dc.contributor.authorKarazehir, Tolga
dc.contributor.authorMühlbacher, Marlene
dc.contributor.authorKaynak, Baris
dc.contributor.authorGreer, A. Lindsay
dc.contributor.authorSarac, A. Sezai
dc.date.accessioned2025-01-06T17:30:11Z
dc.date.available2025-01-06T17:30:11Z
dc.date.issued2019
dc.description.abstractPd-Based amorphous alloys can be used for hydrogen energy-related applications owing to their excellent sorption capacities. In this study, the sorption behaviour of dc magnetron-sputtered and chronoamperometrically-saturated Pd-Si-Cu metallic-glass (MG) nanofilms is investigated by means of aberration-corrected high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy, and electrochemical techniques. The volume expansion of ?V = 10.09 Å3 of a palladium hydride unit cell obtained from HRTEM images due to the hydrogenation of the Pd-MG nanofilms is 1.65 times larger than ?V of the Pd-polycrystalline counterpart loaded under the same conditions. Determined by scanning transmission electron microscopy-high annular dark-field imaging and electron energy loss spectroscopy, the huge difference between the two Pd-based systems is accounted for by the "nanobubbles" originating from hydrogenation, which generate active sites for the formation and expansion of spatially dispersed palladium hydride nanocrystals. A remarkable difference in the hydrogen sorption capacity is measured by electrochemical impedance spectroscopy compared to the Pd polycrystal nanofilms particularly in the ? and ? regions, where the maximum hydrogen to palladium ratio obtained from a combination of chronoamperometry and cyclic voltammetry is 1.56 and 0.61 for the MG and Pd-polycrystal nanofilms, respectively. The findings place Pd-MGs among suitable material candidates for future energy systems. © The Royal Society of Chemistry.
dc.description.sponsorshipMinistry of Science and Higher Education; Horizon 2020 Framework Programme, H2020, (695487); European Research Council, ERC, (3.7383.2017/8.9, ERC-2013-ADG-340025)
dc.identifier.doi10.1039/c9mh00316a
dc.identifier.endpage1487
dc.identifier.issn2051-6347
dc.identifier.issue7
dc.identifier.scopus2-s2.0-85070634748
dc.identifier.scopusqualityQ1
dc.identifier.startpage1481
dc.identifier.urihttps://doi.org/10.1039/c9mh00316a
dc.identifier.urihttps://hdl.handle.net/20.500.14669/1504
dc.identifier.volume6
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherRoyal Society of Chemistry
dc.relation.ispartofMaterials Horizons
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241211
dc.subjectAmorphous alloys
dc.subjectChronoamperometry
dc.subjectCyclic voltammetry
dc.subjectElectrochemical impedance spectroscopy
dc.subjectElectron energy levels
dc.subjectElectron energy loss spectroscopy
dc.subjectElectron scattering
dc.subjectEnergy dissipation
dc.subjectExpansion
dc.subjectGlass
dc.subjectHigh resolution transmission electron microscopy
dc.subjectHydrides
dc.subjectHydrogenation
dc.subjectMetallic glass
dc.subjectPalladium alloys
dc.subjectPolycrystals
dc.subjectScanning electron microscopy
dc.subjectSorption
dc.subjectX ray photoelectron spectroscopy
dc.subjectAberration-corrected
dc.subjectAnnular dark-field imaging
dc.subjectElectrochemical techniques
dc.subjectHydrogen sorption capacity
dc.subjectMaterial candidate
dc.subjectPalladium hydride
dc.subjectScanning transmission electron microscopy
dc.subjectSorption capacities
dc.subjectPalladium compounds
dc.titleUltrahigh hydrogen-sorbing palladium metallic-glass nanostructures
dc.typeArticle

Dosyalar