Fracture characterization and modeling of Gyroid filled 3D printed PLA structures

dc.authoridCHOUPANI, NAGHDALI/0000-0001-7872-6408
dc.contributor.authorTorun, Ahmet Refah
dc.contributor.authorDike, Ali Sinan
dc.contributor.authorYildiz, Ege Can
dc.contributor.authorSaglam, Ismail
dc.contributor.authorChoupani, Naghdali
dc.date.accessioned2025-01-06T17:36:03Z
dc.date.available2025-01-06T17:36:03Z
dc.date.issued2021
dc.description.abstractPolylactic acid (PLA) is a commonly used biodegradable material in medical and increasingly in industrial applications. These materials are often exposed to various flaws and faults due to working and production conditions, and increasing the demand for PLA for various applications requires a full understanding of its fracture behavior. In addition to ABS, PLA is a widely used polymeric material in 3D printing. The gyroid type of filling is advantageous for overcoming the relatively higher brittleness of PLA in comparison with conventional thermoplastic polymers. In this study, the effects of various filling ratios on the fracture toughness of 3D printed PLA samples with gyroid pattern were investigated numerically and experimentally for pure mode I, combined mode I/II, and pure mode II. Two-dimensional finite element modeling was created, and the two-dimensional functions of stress intensity coefficients were extracted in loading mode I, mode I/II, and mode II at varied filling ratios of the gyroid PLA samples. Mixed-mode fracture tests for 3D printed PLA samples with a gyroid pattern at various filling ratios were performed by using a specially developed fracture testing fixture. The results showed that the amount of fracture toughness of the samples under study in tensile mode was much higher than those values in shear mode. Also, as the percentages of the filling ratios in the samples increased, both tensile and shear fracture toughness improved.
dc.identifier.doi10.1515/mt-2020-0068
dc.identifier.endpage401
dc.identifier.issn0025-5300
dc.identifier.issn2195-8572
dc.identifier.issue5
dc.identifier.startpage397
dc.identifier.urihttps://doi.org/10.1515/mt-2020-0068
dc.identifier.urihttps://hdl.handle.net/20.500.14669/1721
dc.identifier.volume63
dc.identifier.wosWOS:000672581300001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.language.isoen
dc.publisherWalter De Gruyter Gmbh
dc.relation.ispartofMaterials Testing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241211
dc.subject3D printing
dc.subjectfracture
dc.subjectbiodegradable polymers
dc.subjectgyroid PLA
dc.subjectmaterial testing
dc.subjectmodeling and simulation
dc.titleFracture characterization and modeling of Gyroid filled 3D printed PLA structures
dc.typeArticle

Dosyalar