Yazar "Pandey, Chandan" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Alternative work arrangements: Individual, organizational and environmental outcomes(Cell Press, 2023) Yildizhan, Hasan; Hosouli, Sahand; Yilmaz, Sidika Ece; Gomes, Joao; Pandey, Chandan; Alkharusi, TarikFlexible working models are widely used around the world. Furthermore, several countries are currently transitioning to a 4-day workweek. These working models have significant effects on organizational behavior and the environment. The study investigates the employees' attitudes and behaviors toward flexible working and 4-day workweek and the impact on the environment. The semi-structured interview method was used in the study to determine employee attitudes and behaviors; the carbon footprint calculation method was used to determine the environmental impact of a 4-day workweek. According to the study's findings, it has been discovered that there would be a positive impact on socialization, happiness, stress factor, motivation, personal time, mental health, comfort, work-life balance, time-saving, willingness, positive working environment, personal time, and physical health. Furthermore, a 4-day workweek reduced commuting emissions by 20%, resulting in a 6,07 kg tCO(2)e reduction per person. As a result, the study attempted to draw attention holistically to the positive effects of the flexible working model and 4-day workweek. The study is intended to serve as a tool for decision-makers and human resource managers.Öğe Experimental investigation of nonuniform PV soiling(Pergamon-Elsevier Science Ltd, 2024) Alkharusi, Tarik; Alzahrani, Mussad M.; Pandey, Chandan; Yildizhan, Hasan; Markides, Christos N.Photovoltaic (PV) module soiling, i.e., the accumulation of dust on PV module surfaces, poses several challenges to PV system performance. Among these challenges, the nonuniform deposition of soiling across the module surface has received scarce attention. Soiling is directly associated with an overall performance loss, but can also potentially give rise to localised hotspots that can lead to long-term PV module failure. Therefore, addressing the issues arising from this nonuniformity is not only important for optimising energy production, but also for enhancing system reliability, and ensuring the long-term operation of relevant power generation systems. In this study, the impact of nonuniform soiling on PV performance is investigated experimentally by examining soil deposition on the upper surfaces of low-iron glass samples. Samples positioned at four different tilt angles were collected on a monthly basis over a one-year study period. Since the horizontal samples were found to represent the worst-case conditions, the most soiled sample at horizontal tilt was divided into four zones, each housing a single monocrystalline solar cell and examined further. The findings reveal that the soiled sample experiences an average transmittance deterioration of 13% relative to a clean sample, and a maximum (relative) spatial variation of 4% between the four zones. These optical losses affect the amount of sunlight received by the cells, resulting in a power deterioration of similar to 6-7% per 5% drop in transmittance. The soiled sample experienced an average temperature rise of 2 degrees C, and an average power output (and efficiency) reduction of 30% relative to the clean sample, and a maximum (relative) spatial variation of 7% between the zones. The 30% average power loss measured in this nonuniform soiling case is more than double that which would be expected theoretically for a transmittance loss of 13% but from uniform soiling, so these results highlight the importance of addressing PV soiling for optimal PV performance, and of accounting for spatial soiling nonuniformity.