Yazar "Gumrukcu, Selin" seçeneğine göre listele
Listeleniyor 1 - 5 / 5
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Functionalized highly electron-rich redox-active electropolymerized 3,4-propylenedioxythiophenes as precursors and targets for bioelectronics and supercapacitors(Royal Soc Chemistry, 2021) Karazehir, Tolga; Sarac, Baran; Gilsing, Hans-Detlev; Gumrukcu, Selin; Eckert, Jurgen; Sarac, A. SezaiIn order to combine capacitive properties with processability, e.g. solubility in organic solvents, poly(3,4-propylenedioxythiophene) derivatives containing different functional groups like oxyphenyl methanol (-OPhCH2OH), oxybenzyl (-OBz), bromide (-Br) and tosyl (-OTs) were synthesized and electropolymerized as thin films from acetonitrile (ACN) using Et4NBF4 as an electrolyte. Multifunctionality in the substitution pattern of the polymer exhibits a similar trend between monomer oxidation potentials and specific capacitance (C-sp) vs. crystal size. The presence of pi-pi stacking interactions in the polymer structures plays an important role in building the crystal structures. The same order of flat band potential and C-sp values are observed for -OBz < -Br < -OTs < -OPhCH2OH substitutions. The structures of PProDOT-OBz and PProDOT-OPhCH2OH resemble each other much more than those of PProDOT-Br and PProDOT-OTs. Impedance measurements were conducted at different applied biases in order to define a Mott-Schottky analysis revealing the dependence of the semiconducting properties on the type of substituent present in the PProDOT derivative.Öğe Low-Symmetry Phthalocyanine Cobalt Bis(dicarbollide) Conjugate for Hydrogen Reduction(Wiley-V C H Verlag Gmbh, 2018) Nar, Ilgin; Atsay, Armagan; Gumrukcu, Selin; Karazehir, Tolga; Hamuryudan, EsinThe synthesis and characterization of two new A(3)B type unsymmetrical zinc phthalocyanines, one bearing a hydroxyl group and the other bearing a cobalt bis(dicarbollide) unit, are reported here. The introduction of diethylaminophenoxy moieties to the phthalocyanine fragments yields outstanding solubilities in organic solvents, as well as providing electropolymerization on the surface of the electrode. These modified electrodes are found to be effective for the electrocatalytic reduction of hydrogen ions in acidic media. The enhanced hydrogen-evolution reaction (HER) performance for the bis(dicarballide)-functionalized phthalocyanine-modified electrode can be simultaneously observed. This is attributed to its redox-active metal center of cobalt bis(dicarbollide), creating a synergistic effect, to facilitate many more electrocatalytic active sites, resulting in improved HER performance. The catalyst shows an onset potential of 163 mV at a current density of 8.79 mu Acm(-2), and a Tafel slope as low as 28 mVdec(-1).Öğe Peripherally and non-peripherally carboxylic acid substituted Cu(ii) phthalocyanine/reduced graphene oxide nanohybrids for hydrogen evolution reaction catalysts(Royal Soc Chemistry, 2023) Kaplan, Ekrem; Karazehir, Tolga; Gumrukcu, Selin; Sarac, Baran; Sarac, A. Sezai; Hamuryudan, EsinDue to growing environmental concerns and increasing energy needs, hydrogen, one of the key options as a future energy carrier, has lately gained more interest. In this study, we have reported nanohybrid electrocatalyst materials based on peripherally and non-peripherally carboxylic acid substituted copper phthalocyanines (CuPcs) and reduced graphene oxide (rGO) constructed via pi-pi interactions between CuPcs and rGO. Prepared nanocomposites were coated onto the surface of a glassy carbon electrode and their electrocatalytic activity for the hydrogen evolution reaction (HER) was studied. Structural, electrochemical, and surface morphological properties of the produced electrodes were investigated using Fourier transform infrared (FT-IR) and Raman spectroscopy, X-ray diffraction (XRD), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM) analyses. Electrochemical measurements indicated that the peripherally substituted rGO/CuPc electrodes have more efficiency and activity compared to the non-peripherally substituted ones. In addition, the EIS results show that peripherally carboxylic substituted rGO/CuPc electrodes become more conductive due to the position and content of the carboxyl groups. This increasing performance of the HER implied by a smaller impedance together with more facile electron transfer kinetics indicates a pronounced enhancement of the electrocatalytic hydrogen activity of peripherally carboxylic substituted rGO/CuPc electrodes.Öğe Reduced graphene oxide supported meso-pyridyl BODIPY-Cobaloxime complexes for electrocatalytic hydrogen evolution reaction(Pergamon-Elsevier Science Ltd, 2024) Gumrukcu, Selin; Kaplan, Ekrem; Karazehir, Tolga; Ozcesmeci, Mukaddes; Ozcesmeci, Ibrahim; Hamuryudan, EsinCreating innovative catalysts utilizing nonprecious metals for the electrocatalytic hydrogen evolution reaction (HER) poses a significant difficulty. We present a cobaloxime (Cox) complex having pyridine (2-Cox) and tetrafluorophenyl-thio-pyridine (4-Cox) functional groups, which contains a 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) moiety. This combination serves as a catalyst for proton reduction and is immobilized onto reduced graphene oxide (rGO) by pi-pi stacking between the cobaloxime complex and rGO. Moreover, the unique complex's structures were determined through the application of ultraviolet-visible spectroscopy (UV-Vis), Fourier Transform Infrared spectroscopy (FT-IR), X-ray diffraction spectroscopy (XRD), and scanning electron microscopy (SEM). The electrocatalytic activity of the two rGO/2-Cox and rGO/4-Cox electrodes towards hydrogen (H-2) were examined under both alkaline and acidic conditions. The cobaloxime-modified rGO electrodes demonstrate superior electrocatalytic performance for the HER under acidic conditions compared to alkaline conditions. The overpotential at a current density of 10 mA cm(-2) for rGO/2-Cox in 0.5 M H2SO4 is -0.342 V, which is notably lower than the overpotential of rGO/4-Cox (-0.496 V). The Tafel slope for the rGO/2-Cox electrode in a 0.5 M H2SO4 solution is 111 mV.dec(-1), but for the rGO/4-Cox electrode it is 156 mVdec(-1). This discrepancy suggests that the rGO/2-Cox electrode demonstrates better performance in the HER compared to the rGO/4-Cox electrode.Öğe Surface-governed electrochemical hydrogenation in FeNi-based metallic glass(Elsevier, 2020) Sarac, Baran; Zadorozhnyy, Vladislav; Ivanov, Yurii P.; Kvaratskheliya, Askar; Ketov, Sergey; Karazehir, Tolga; Gumrukcu, SelinThe hydrogenation and oxide formation behavior of Fe-Ni-based metallic glasses (MGs), where measurements by the conventional gas-solid reaction method are difficult, is analyzed by a two-step approach: chronoamperometry followed by cyclic voltammetry (CA + CV). We introduce a concept of effective volume by measuring the thickness of the region where the hydrogen and hydroxyl ion interactions with Fe-based MG take place, which is characterized by high-angle annular dark-field scanning transmission electron microscopy. A very constant film thickness influenced by the OH- and H+ is confirmed by TEM, where the chemical homogeneity is maintained within this region. The weight percent of hydrogen and the corresponding hydrogen-to-metal ratio are determined as 1.16% and 0.56, respectively. When compared to previous studies conducted by the electrochemical- permeation method, the H/M ratio is found to be an order of magnitude larger. Electrochemical impedance spectroscopy (EIS) and subsequent equivalent circuit modeling (ECM) of the tested ribbons resolve the surface-diffusion processes for hydride formation and oxidation kinetics. This contribution provides a different perspective for the design and study of low-cost and high-performance amorphous nanofilms for hydrogenenergy applications, particularly when the common gas-adsorption methods are problematic.