A Hybrid Extreme Learning Machine and its Variant for Stock Price Prediction

[ X ]

Tarih

2016

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Çok yüksek getiri elde etme potansiyeline sahip olması nedeniyle doğru ve etkili hisse senedi fiyatı tahmini yatırımcılar için caziptir. Bununla birlikte, borsanın karmaşık, evrimsel ve doğrusal olmayan yapısı nedeniyle, modern iş dünyasında hâlâ karmaşık bir iştir. Bu nedenle, iki melez model, HS-ELM olarak adlandırılan Harmoni Araması (HS) tabanlı aşırı öğrenme makinesi (ELM) ve HS-RELM olarak adlandırılan HS tabanlı tekrarlı aşırı öğrenme makinesi (RELM), günlük hisse senedi fiyatı tahminini doğru ve hızlı bir şekilde elde etmek için önerilmiştir. Bu çalışma, hisse senedi fiyatı tahmini alanına yeni bir yön vermekte ve BIST50 Endeksinde bulunan farklı hisse senetleri üzerinde uygulanması ile HS-ELM ve HS-RELM'nin hisse senedi fiyat tahmininde nasıl yapılandırılması gerektiği konusunda bazı öneriler sunmaktadır. Performans ölçümlerinin sonuçları, her iki önerilen modelin hisse senetleri fiyat tahminine pratik uygulanabilirliği açısından oldukça yararlı olduğunu göstermesine rağmen HS-RELM modelinin performansının HS-ELM modelinin performansından daha iyi olduğu gözlemlenmiştir

Açıklama

Anahtar Kelimeler

Kaynak

Çukurova Üniversitesi Mühendislik-Mimarlik Fakültesi Dergisi

WoS Q Değeri

Scopus Q Değeri

Cilt

31

Sayı

ÖS2

Künye