Model Investigation of Nonlinear Dynamical Systems by Sparse Identification

dc.contributor.authorKadah, Nezir
dc.contributor.authorÖzbek, Necdet Sinan
dc.date.accessioned2025-01-06T17:23:20Z
dc.date.available2025-01-06T17:23:20Z
dc.date.issued2020
dc.departmentAdana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi
dc.description.abstractThe sparse identification of nonlinear dynamics (SINDy), which is based on the sparse regression techniques to identify the nonlinear systems, is one of the recent data-driven model identification methods. The model equations of the system are extracted from the data. Although sufficient data is available from most of the engineering, healthcare, and economic sciences, there are few well-defined models to represent the system behaviour that can also be estimated from data-driven methods. With this motivation in mind, this study presents offline data-driven identification techniques to build the mathematical model of nonlinear systems. The data-based sparse identification of nonlinear systems is elaborated with a number of examples. The performance of the identification procedure is discussed in terms of quantitative metrics in the presence of noisy measurements.
dc.identifier.doi10.31590/ejosat.822361
dc.identifier.endpage263
dc.identifier.issn2148-2683
dc.identifier.issueEjosat Özel Sayı 2020 (ISMSIT)
dc.identifier.startpage254
dc.identifier.trdizinid485168
dc.identifier.urihttps://doi.org/10.31590/ejosat.822361
dc.identifier.urihttps://search.trdizin.gov.tr/tr/yayin/detay/485168
dc.identifier.urihttps://hdl.handle.net/20.500.14669/731
dc.identifier.volume0
dc.indekslendigikaynakTR-Dizin
dc.language.isoen
dc.relation.ispartofAvrupa Bilim ve Teknoloji Dergisi
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241211
dc.subjectBilgisayar Bilimleri
dc.subjectYazılım Mühendisliği
dc.subjectFizik
dc.subjectAtomik ve Moleküler Kimya
dc.subjectBilgisayar Bilimleri
dc.subjectTeori ve Metotlar
dc.subjectİstatistik ve Olasılık
dc.titleModel Investigation of Nonlinear Dynamical Systems by Sparse Identification
dc.typeArticle

Dosyalar