Performance Evaluation of Brushless Direct Current Motor Control Methods through Low-Cost Microcontroller-Based Real-Time Experiments
dc.contributor.author | Yorat, Emre | |
dc.contributor.author | Özbek, Necdet Sinan | |
dc.contributor.author | Sarıbulut, Lütfü | |
dc.date.accessioned | 2025-01-06T17:23:09Z | |
dc.date.available | 2025-01-06T17:23:09Z | |
dc.date.issued | 2023 | |
dc.department | Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi | |
dc.description.abstract | Brushless direct current (BLDC) motors are high efficiency synchronous motors that are employed in a variety of applications due to prominent features such as long operational life, low maintenance requirements, and great dynamic response. BLDC motors are driven by energizing the stator windings with an inverter circuit. To commutate the inverter switches, the trapezoidal (120°) method is generally used by considering the back electromagnetic force induced on unenergized phase of BLDC. Furthermore, depending on the application requirements, alternative commutation modes (CM) such as 180°, 150°, and sinusoidal-based approaches are utilized. In the literature, the performance comparison of some CMs was studied for two-phase on operation and three-phase on operation mode by considering the switching patterns. However, only a few research assessed the performance of two or three commutation modes simultaneously. In this study, the performance comparison of pulse width modulation (PWM) based commutation modes are examined by considering 120°, 180°, 150° modes, and sinusoidal PWM. In this scope, it is the first time that direct digital synthesis (DDS) is addressed as a BLDC control algorithm in a performance comparison study. In experimental studies, a simple and a low-cost drive circuit is designed to acquire the case results. According to the results, the proposed DDS-based sine commutation method is more efficient than other commutation methods and it has lower power consumption at both low and high speeds also a wider operable speed range than other applied methods. | |
dc.identifier.doi | 10.29109/gujsc.1229896 | |
dc.identifier.endpage | 510 | |
dc.identifier.issn | 2147-9526 | |
dc.identifier.issue | 2 | |
dc.identifier.startpage | 498 | |
dc.identifier.trdizinid | 1184735 | |
dc.identifier.uri | https://doi.org/10.29109/gujsc.1229896 | |
dc.identifier.uri | https://search.trdizin.gov.tr/tr/yayin/detay/1184735 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14669/659 | |
dc.identifier.volume | 11 | |
dc.indekslendigikaynak | TR-Dizin | |
dc.language.iso | en | |
dc.relation.ispartof | Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji | |
dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.snmz | KA_20241211 | |
dc.subject | DDS | |
dc.subject | BLDC | |
dc.subject | Commutation Modes | |
dc.subject | L298N | |
dc.subject | Experimental Application | |
dc.title | Performance Evaluation of Brushless Direct Current Motor Control Methods through Low-Cost Microcontroller-Based Real-Time Experiments | |
dc.type | Article |