Yazar "Zannou, Oscar" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A comprehensive review of recent development in extraction and encapsulation techniques of betalains(Taylor and Francis Ltd., 2024) Zannou, Oscar; Oussou, Kouame F.; Chabi, Ifagbémi B.; Odouaro, Oscar B. O.; Deli, Mahn G. E. P.; Goksen, Gulden; Vahid, Aïssi M.Betalains are attractive natural pigments with potent antioxidant activity, mainly extracted from the roots, tubers, leaves, flowers, and fruits of certain plants and some fungi. They constitute a reliable alternative to synthetic dyes used in the food industry and are considered toxic for consumers. In addition, there is convincing evidence of their health benefits for consumers. However, betalains are highly unstable to environment factors, such as light, heat, oxygen, water activity, and pH change which can be degraded during food processing, handling, storage, or delivery. Therefore, newly developed extraction methods and micro/nano-encapsulation techniques are currently applied to enhance the extraction yield, solve their instability problems, and improve their application in the food industry. This article aims to summarize the new advanced extraction methods of betalains, discussing the recent encapsulation techniques concerning the different encapsulating materials utilization. Betalains, natural pigments with potent antioxidant activity, are increasingly extracted from the roots, tubers, leaves, flowers, and fruits of certain plants and some fungi as safe alternatives to synthetic food dyes used in the food industry. However, their susceptibility to degradation during food processing, storage, and delivery poses challenges. Recent developments in extraction methods (e.g., supercritical fluid, pressurized liquid, ultrasound- and microwave-assisted, and enzyme-assisted) enhance betalain recovery, minimizing degradation. Encapsulation techniques using biopolymers, proteins, lipids, and nanoparticles protect betalains from environmental factors, extending shelf life and enabling controlled release. These advancements offer improved extraction efficiency, reduced solvent use, shorter processing times, and enhanced stability. Integration of these techniques in the food industry presents opportunities for incorporating betalains into various products, including functional foods, beverages, and dietary supplements. By addressing stability challenges, these developments support the production of innovative, healthier food items enriched with betalains. This article provides an overview of recent advancements in betalain extraction and encapsulation, highlighting their potential applications in the food industry. © 2023 Taylor & Francis Group, LLC.Öğe Elucidation of Infusion-Induced Changes in the Key Odorants and Aroma Profile of Iranian Endemic Borage (Echium amoenum) Herbal Tea(Amer Chemical Soc, 2019) Amanpour, Asghar; Zannou, Oscar; Kelebek, Haşim; Selli, SerkanInfusion-induced changes in the aroma and key odorants and their odor activity values of Iranian endemic herbal (Gol-Gavzaban) tea obtained from shade-dried violet-blue petals of borage (Echium amoenum) were studied for the first time. Two hot teas and one cold tea were investigated and coded as 4MN (4 min/98 degrees C), 16MN (16 min/98 degrees C), and 24HR (24 h/ambient temperature), respectively. Aromatic extracts of the tea samples were isolated by the liquid-liquid extraction method and analyzed by gas chromatography-mass spectrometry-olfactometry (GC-MS-O) for the first time. According to the results of the aroma profiling, a total of 35 common aroma compounds comprising alcohols, acids, volatile phenols, lactones, aldehydes, ketone, pyrroles, and furans were identified and quantified in the tea samples. Indeed, it is worth noting that the aroma profiles of the borage teas were similar. However, the effects of the infusion techniques were clearly different as observed on the content of each individual and total compounds in the samples. The highest mean total concentration was detected in 24HR (266.0 mg/kg), followed by 16MN (247.1 mg/kg) and 4MN (216.1 mg/kg). 1-Penten-3-ol was the principal volatile component in all borage teas. On the basis of the result of the flavor dilution (FD) factors, a combined total of 22 different key odorants was detected. The potential key odorants with regard to FD factors in all samples were prevailingly alcohols, acids, and terpenes. The highest FD factors were observed in 2-hexanol (2048 in 4MN and 24HR; 1024 in 16MN) and 1-penten-3-ol (2048 in 24HR; 1024 in 4MN and 16MN) in samples providing herbal and green notes. Principal component analysis (PCA) showed that the tea samples could clearly be discriminated in terms of their aroma profiles and key odorants. The findings of the current study demonstrate that the tea preparation conditions have a significant impact on the organoleptic quality of borage tea.Öğe Elucidation of Infusion-Induced Changes in the Key Odorants and Aroma Profile of Iranian Endemic Borage (Echium amoenum) Herbal Tea(Amer Chemical Soc, 2019) Amanpour, Asghar; Zannou, Oscar; Kelebek, Hasim; Selli, SerkanInfusion-induced changes in the aroma and key odorants and their odor activity values of Iranian endemic herbal (Gol-Gavzaban) tea obtained from shade-dried violet-blue petals of borage (Echium amoenum) were studied for the first time. Two hot teas and one cold tea were investigated and coded as 4MN (4 min/98 degrees C), 16MN (16 min/98 degrees C), and 24HR (24 h/ambient temperature), respectively. Aromatic extracts of the tea samples were isolated by the liquid-liquid extraction method and analyzed by gas chromatography-mass spectrometry-olfactometry (GC-MS-O) for the first time. According to the results of the aroma profiling, a total of 35 common aroma compounds comprising alcohols, acids, volatile phenols, lactones, aldehydes, ketone, pyrroles, and furans were identified and quantified in the tea samples. Indeed, it is worth noting that the aroma profiles of the borage teas were similar. However, the effects of the infusion techniques were clearly different as observed on the content of each individual and total compounds in the samples. The highest mean total concentration was detected in 24HR (266.0 mg/kg), followed by 16MN (247.1 mg/kg) and 4MN (216.1 mg/kg). 1-Penten-3-ol was the principal volatile component in all borage teas. On the basis of the result of the flavor dilution (FD) factors, a combined total of 22 different key odorants was detected. The potential key odorants with regard to FD factors in all samples were prevailingly alcohols, acids, and terpenes. The highest FD factors were observed in 2-hexanol (2048 in 4MN and 24HR; 1024 in 16MN) and 1-penten-3-ol (2048 in 24HR; 1024 in 4MN and 16MN) in samples providing herbal and green notes. Principal component analysis (PCA) showed that the tea samples could clearly be discriminated in terms of their aroma profiles and key odorants. The findings of the current study demonstrate that the tea preparation conditions have a significant impact on the organoleptic quality of borage tea.Öğe Elucidation of key odorants in Beninese Roselle (Hibiscus sabdariffa L.) infusions prepared by hot and cold brewing(Elsevier, 2020) Zannou, Oscar; Kelebek, Haşim; Selli, SerkanRoselle (Hibiscus sabdariffa L.) is an edible flower belonging to the large family of Malvaceae. Aroma is one of the crucial parameters to determine the final tea overall quality and the consumer's preference and it is affected by different processing factors (drying, heating, brewing etc.). The aim of this study was to compare hot and cold brewing procedures on the aroma and aroma-active compounds of Beninese Roselle for the first time. Three different infusions were prepared and coded as R16M (16 min/98 degrees C), R40M (40 min/98 degrees C) and R24H (24 h/at ambient temperature). The aroma compounds of the infusion samples were extracted by liquid liquid extraction (LLE) method and determined by gas chromatography-mass spectrometry (GC-MS). A total of 38, 38 and 39 aroma compounds including alcohols, furans, acids, ketones, aldehydes, volatile phenols, lactones, pyranone, pyrrole, terpene and ester were detected in R16M, R40M and R24H infusions, respectively. The total aroma concentration of the cold infusion sample (R24H) was higher than those of two hot infusions. A significant reduction was found in the amount of these compounds in the sample prepared by hot infusion with 16 min (R16M). In all three samples, furans were identified as the dominant aroma group followed by alcohols. Based on the results of the aroma extract dilution analysis (AEDA), a total of 22 and 23 different key odorants were detected in hot infusions (R16M and R40M) and cold infusion (R24H) (ambient temperature), respectively. The powerful key odorants with regard to FD (flavor dilution) factors in all samples were prevailingly furans, alcohols, and aldehydes. The highest FD factors were found in furfural and 5-methyl-2-furfural providing caramel and bready notes. Principal component analysis (PCA) showed that Roselle infusions could clearly be discriminated in terms of their aroma profiles. The findings of this study demonstrate that the brewing procedures have a important impact on the final aroma and key odorants of Roselle infusions.