Yazar "Yurt, Fatma" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Antimicrobial activity enhancement of PVA/chitosan films with the additive of CZTS quantum dots(Springer, 2023) Ceylan, Seda; Kucukosman, Ridvan; Yurt, Fatma; Ozel, Derya; Oztuerk, Ismail; Demir, Didem; Ocakoglu, KasimThe wound environment is a breeding ground for pathogens, and traditional wound dressing materials lack antibacterial properties. In this work, we aimed to develop PVA/chitosan (P/C)-based wound dressing scaffolds with anti-infective properties using Cu2ZnSnS4 quantum dots (CZTS QDs) to prevent infections in the wound. CZTS quantum dots were prepared by a simple hydrothermal process and characterized using appropriate techniques such as TEM, XRD, FTIR spectrum, and UV-Vis absorption spectroscopy. CZTS QDs were subsequently loaded at different concentrations onto PVA/chitosan membranes (0, 1.6, 2.5 and 3.3% w/w, based on the total polymer quantity). The chemical structure, contact angle and mechanical properties of the membranes were analyzed, and their antimicrobial activities and cell viability were also investigated. The cytocompatibility of the membranes and cell morphology was investigated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and SEM. Based on studies on the interactions between membranes and cells, it was determined that incorporation of CZTS QDs into the membrane did not cause toxicity. To the best of our knowledge, this is the first report on loading CZTS QDs into membranes for tissue engineering applications, and the overall findings suggest that CZTS QDs-integrated membranes might have potentially appealing uses as antimicrobial films for wound healing.Öğe Development of antimicrobial nanocomposite scaffolds via loading CZTSe quantum dots for wound dressing applications(Iop Publishing Ltd, 2022) Ceylan, Seda; Sert, Buse; Yurt, Fatma; Tuncel, Ayca; Ozturk, Ismail; Demir, Didem; Ocakoglu, KasimThe antimicrobial properties of scaffolds designed for use in wound healing are accepted as an important factor in the healing process to accelerate the wound healing process without causing inflammation. For this purpose, chitosan-polyvinyl alcohol composite membranes loaded with Cu2ZnSnSe4 quantum dots (CZTSe QDs) as an antibacterial and cytocompatible biomaterial to regulate the wound healing process were produced. CZTSe QDs particles were synthesized under hydrothermal conditions. Polymer-based nanocomposites with different concentrations of the synthesized nanoparticles were produced by the solvent casting method. After detailed physicochemical and morphological characterizations of CZTSe QDs and composite membranes, antibacterial activities and cell viability were extensively investigated against gram-positive and gram-negative bacterial and yeast strains, and L929 mouse fibroblast cells lines, respectively. The results show that the preparation of composite scaffolds at a QDs concentration of 3.3% by weight has the best antimicrobial activity. Composite scaffold membranes, which can be obtained as a result of an easy production process, are thought to have great potential applications in tissue engineering as wound dressing material due to their high mechanical properties, wettability, strong antibacterial properties and non-toxicity.