Yazar "Vapur, Huseyin" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Concentration study of a specularite ore via shaking table, reverse flotation, and microwave-assisted magnetic separation(Taylor & Francis Inc, 2023) Al-Dhubaibi, Ammar Mahdi Ahmed; Vapur, Huseyin; Top, Soner; Sivrikaya, OsmanDespite the difficulties in pelletizing specularite-type refractory iron ores, the utilization of these resources is indispensable for the steel industry due to the increasing need for iron. This study investigated Fe recovery from a refractory iron ore using gravity separation, reverse flotation, and two-stage magnetic separation. Tilt angle and particle size had a significant effect on the grade and recovery of concentrates in shaking table tests. Gravity concentration at optimum conditions resulted in an iron concentrate with 64.47% Fe grade and 90.73% Fe recovery. In the reverse flotation tests, the frother and depressant substantially affected the Fe grade of concentrates while the collector influenced the Fe recovery. A 90% Fe recovery with 64.69% Fe grade was obtained within optimum flotation conditions. The Fe grades were raised to >67.5% in products after the first magnetic separation. The tailings of the first magnetic separation were subjected to the second magnetic separation after microwave-assisted roasting to increase the magnetic susceptibility. In the second magnetic separation, a concentrate containing 66.06% Fe was separated from the microwave-roasted non-magnetic material with 82.23% Fe recovery. To the best of our knowledge, the microwave-roasting method has been applied to a specularite-type refractory iron ore for the first time.Öğe Production of precipitated calcium carbonate particles from gypsum waste using venturi tubes as a carbonation zone(Elsevier Sci Ltd, 2019) Altiner, Mahmut; Top, Soner; Kaymakoglu, Burcin; Seckin, Ismail Yigit; Vapur, HuseyinIn this study, we investigated the production of precipitated calcium carbonate (PCC) particles from desulfurization gypsum (DG) waste using a new experimental apparatus that is divided into two main parts: carbonation and stabilization zones. The solution was circulated via a pump from the stabilization zone to the carbonation zone where different types of Venturi tube were used for the reaction of CO2 with solution to produce PCC particles. The effects of CO2 flow rate, circulation rate, and Venturi types on the properties of the produced PCC particles were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), and particle size analyses. The conductivity and pH values of the solution were monitored during the carbonation. In addition, the reactivity of selected PCC was determined to evaluate its use as a sorbent in a desulfurization unit. The experimental results indicate that the Venturi tube had a strong effect on the reaction time and properties of PCC particles. The use of a Venturi tube resulted in a decrease in the time required for producing PCC particles, which were smooth, well-crystallized, and nano-sized cubic crystals. However, when no Venturi tube was used, hollow spherical crystals formed along with cubic crystals. It was found that the reactivity of selected PCC particles produced using Venturi tube was rather higher (52x10(-4) min(-1)), indicating that the PCC can be used as a sorbent in the desulfurization unit.