Yazar "Ulubas, Cagla" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Casein-Hydrolysate-Loaded W/O Emulsion Preparation as the Primary Emulsion of Double Emulsions: Effects of Varied Phase Fractions, Emulsifier Types, and Concentrations(Mdpi, 2023) Salum, Pelin; Ulubas, Cagla; Güven, Onur; Aydemir, Levent Yurdaer; Erbay, ZaferStable primary emulsion formation in which different parameters such as viscosity and droplet size come into prominence for their characterization is a key factor in W/O/W emulsions. In this study, different emulsifiers (Crill (TM) 1, Crill (TM) 4, AMP, and PGPR) were studied to produce a casein-hydrolysate-loaded stable primary emulsion with lower viscosity and droplet size. Viscosity, electrical conductivity, particle size distribution, and emulsion stability were determined for three different dispersed phase ratios and three emulsifier concentrations. In 31 of the 36 examined emulsion systems, no electrical conductivity could be measured, indicating that appropriate emulsions were formed. While AMP-based emulsions showed non-Newtonian flow behaviors with high consistency coefficients, all PGPR-based emulsions and most of the Crill (TM)-1- and -4-based ones were Newtonian fluids with relatively low viscosities (65.7-274.7 cP). The PGPR-based emulsions were stable for at least 5 days and had D(90) values lower than 2 mu m, whereas Crill (TM)-1- and -4-based emulsions had phase separation after 24 h and had minimum D(90) values of 6.8 mu m. PGPR-based emulsions were found suitable and within PGPR-based emulsions, and the best formulation was determined by TOPSIS. Using 5% PGPR with a 25% dispersed phase ratio resulted in the highest relative closeness value. The results of this study showed that PGPR is a very effective emulsifier for stable casein-hydrolysate-loaded emulsion formations with low droplet size and viscosity.Öğe Design and process optimisation of double emulsions loaded with casein hydrolysate(Elsevier Sci Ltd, 2024) Salum, Pelin; Ulubas, Cagla; Guven, Onur; Cam, Mustafa; Aydemir, Levent Yurdaer; Erbay, ZaferWater-in-oil-in-water (W1/O/W2) emulsions show promise for encapsulating hydrophilic active substances. However, the low stability of W1/O/W2 hinders its use for encapsulation purposes, and peptide encapsulation has challenges due to its surface-active properties. This study aimed to determine the appropriate formulation based on turbidity and encapsulation efficiency, as well as the optimal production parameters (ultrasound amplitude and time) for double emulsions containing casein hydrolysate, with a focus on the second homogenisation stage. Double emulsions were produced with three different emulsifiers (polysorbates 20, 60, or 80) at different concentrations (0.25%, 1%, or 1.75%) and dispersed phase ratios (10%, 20%, or 30%) using an ultrasound homogeniser. The results indicated that dispersed phase ratios and emulsifier concentrations had higher impact on emulsion properties than emulsifier types. A stable emulsion with high encapsulation efficiency was achieved with 1% polysorbate 20 and a 30% dispersed phase ratio, using sonication at 54% amplitude for 66 s. (c) 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.Öğe The Impact of Homogenization Techniques and Conditions on Water-In-Oil Emulsions for Casein Hydrolysate-Loaded Double Emulsions: A Comparative Study(Wiley, 2024) Salum, Pelin; Ulubas, Cagla; Gueven, Onur; Cam, Mustafa; Aydemir, Levent Yurdaer; Erbay, ZaferThis study aims to evaluate homogenization techniques and conditions for producing stable, small droplet-size water-in-oil (W/O) emulsions intended for incorporation into casein hydrolysate-loaded double emulsions. Three commonly used homogenization methods; rotor-stator, ultrasonic, and high-pressure homogenization were individually optimized utilizing response surface methodology. Instances of over-processing were observed, particularly with the rotor-stator and ultrasonic homogenizers under specific conditions. Nevertheless, optimal conditions were identified for each technique: 530 s at 17,800 rpm agitation speed for the rotor-stator homogenizer, 139 s at 39% amplitude for the ultrasonic homogenizer, and 520 s at 1475 bar for the high-pressure homogenizer. Subsequently, the W/O emulsions produced under optimal conditions and their respective W1/O/W2 double emulsions were compared. The rotor-stator and high-pressure homogenized W/O emulsions exhibited comparable narrow droplet-size distributions, as indicated by similar Span values. However, high-pressure homogenization failed to sufficiently minimize droplet size. Ultrasonic homogenization resulted in droplets at the 1-mu m scale but yielded more polydisperse droplet-size distribution. According to TOPSIS analysis, an emulsion with a viscosity of 93.1 cP (centiPoise), a stability index of 93.8%, a D(90) of 0.67 mu m (0th day), and a D(90) of 0.75 mu m (30th day) produced using a rotor-stator was selected. Additionally, double emulsions containing primary emulsions prepared with the rotor-stator method demonstrated higher viscosity, narrower droplet-size distribution, and lower creaming compared to other samples. This investigation sheds light on the influence of homogenization techniques on emulsion properties, providing valuable insights for optimizing double emulsion formulations. This study optimizes homogenization techniques for water-in-oil (W/O) emulsions in double emulsions. Rotor-stator, ultrasonic, and high-pressure homogenization methods were optimized based on emulsions' viscosity, stability, and droplet size in both W/O and double emulsions. This research offers insights for refining double emulsion formulations by considering the impact of homogenization techniques on emulsion properties.image