Yazar "Timur, Oguzhan" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A State-of-the-Art Review of Artificial Intelligence Techniques for Short-Term Electric Load Forecasting(IEEE, 2017) Zor, Kasim; Timur, Oguzhan; Teke, AhmetAccording to privatization and deregulation of power system, accurate electric load forecasting has come into prominence recently. The new energy market and the smart grid paradigm ask for both better demand side management policies and for more reliable forecasts from single end-users, up to system scale. However, it is complex to predict the electric demand owing to the influencing factors such as climate factors, social activities, and seasonal factors. The methods developed for load forecasting are broadly analyzed in two categories, namely analytical techniques and artificial intelligence techniques. In the literature, commonly used analytical methods are linear regression method, Box-Jenkins method, and nonparametric regression method. The analytical methods work well under normal daily circumstances, but they can't give contenting results while dealing with meteorological, sociological or economical changes, hence they are not updated depending on time. Therefore, artificial intelligence techniques have gained importance in reducing estimation errors. Artificial neural network, support vector machine, and adaptive neuro-fuzzy inference system are among these artificial intelligence techniques. In this paper, a state-of-the-art review of three artificial intelligence techniques for short-term electric load forecasting is comprehensively presented.Öğe Application of Statistical and Artificial Intelligence Techniques for Medium-Term Electrical Energy Forecasting: A Case Study for a Regional Hospital(Int Centre Sustainable Dev Energy Water & Env Systems-Sdewes, 2020) Timur, Oguzhan; Zor, Kasim; Celik, Ozgur; Teke, Ahmet; Ibrikci, TurgayElectrical energy forecasting is crucial for efficient, reliable, and economic operations of hospitals due to serving 365 days a year, 24/7, and they require round-the-clock energy. An accurate prediction of energy consumption is particularly required for energy management, maintenance scheduling, and future renewable investment planning of large facilities. The main objective of this study is to forecast electrical energy demand by performing and comparing well-known techniques, which are frequently applied to short-term electrical energy forecasting problem in the literature, such as multiple linear regression as a statistical technique and artificial intelligence techniques including artificial neural networks containing multilayer perceptron neural networks and radial basis function networks, and support vector machines through a case study of a regional hospital in the medium-term horizon. In this study, a state-of-the-art literature review of medium-term electrical energy forecasting, data set information, fundamentals of statistical and artificial intelligence techniques, analyses for aforementioned methodologies, and the obtained results are described meticulously. Consequently, support vector machines model with a Gaussian kernel has the best validation performance, and the study revealed that seasonality has a dominant influence on forecasting performance. Hence heating, ventilation, and air-conditioning systems cover the major part of electrical energy consumption of the regional hospital. Besides historical electrical energy consumption, outdoor mean temperature and calendar variables play a significant role in achieving accurate results. Furthermore, the study also unveiled that the number of patients is steady over the years with only small deviations and have no significant influence on medium-term electrical energy forecasting.Öğe Short-Term Building Electrical Energy Consumption Forecasting by Employing Gene Expression Programming and GMDH Networks(Mdpi, 2020) Zor, Kasim; Celik, Ozgur; Timur, Oguzhan; Teke, AhmetOver the past decade, energy forecasting applications not only on the grid side of electric power systems but also on the customer side for load and demand prediction purposes have become ubiquitous after the advancements in the smart grid technologies. Within this context, short-term electrical energy consumption forecasting is a requisite for energy management and planning of all buildings from households and residences in the small-scale to huge building complexes in the large-scale. Today's popular machine learning algorithms in the literature are commonly used to forecast short-term building electrical energy consumption by generating an abstruse analytical expression between explanatory variables and response variables. In this study, gene expression programming (GEP) and group method of data handling (GMDH) networks are meticulously employed for creating genuine and easily understandable mathematical models among predictor variables and target variables and forecasting short-term electrical energy consumption, belonging to a large hospital complex situated in the Eastern Mediterranean. Consequently, acquired results yielded mean absolute percentage errors of 0.620% for GMDH networks and 0.641% for GEP models, which reveal that the forecasting process can be accomplished and formulated simultaneously via proposed algorithms without the need of applying feature selection methods.