Yazar "Sinha, Raghu" seçeneğine göre listele
Listeleniyor 1 - 4 / 4
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe A 19-Gene Signature of Serous Ovarian Cancer Identified by Machine Learning and Systems Biology: Prospects for Diagnostics and Personalized Medicine(Mary Ann Liebert, Inc, 2024) Kori, Medi; Demirtas, Talip Yasir; Comertpay, Betul; Arga, Kazim Yalcin; Sinha, Raghu; Gov, EsraOvarian cancer is a major cause of cancer deaths among women. Early diagnosis and precision/personalized medicine are essential to reduce mortality and morbidity of ovarian cancer, as with new molecular targets to accelerate drug discovery. We report here an integrated systems biology and machine learning (ML) approach based on the differential coexpression analysis to identify candidate systems biomarkers (i.e., gene modules) for serous ovarian cancer. Accordingly, four independent transcriptome datasets were statistically analyzed independently and common differentially expressed genes (DEGs) were identified. Using these DEGs, coexpressed gene pairs were unraveled. Subsequently, differential coexpression networks between the coexpressed gene pairs were reconstructed so as to identify the differentially coexpressed gene modules. Based on the established criteria, SOV-module was identified as being significant, consisting of 19 genes. Using independent datasets, the diagnostic capacity of the SOV-module was evaluated using principal component analysis (PCA) and ML techniques. PCA showed a sensitivity and specificity of 96.7% and 100%, respectively, and ML analysis showed an accuracy of up to 100% in distinguishing phenotypes in the present study sample. The prognostic capacity of the SOV-module was evaluated using survival and ML analyses. We found that the SOV-module's performance for prognostics was significant (p-value = 1.36 x 10-4) with an accuracy of 63% in discriminating between survival and death using ML techniques. In summary, the reported genomic systems biomarker candidate offers promise for personalized medicine in diagnosis and prognosis of serous ovarian cancer and warrants further experimental and translational clinical studies.Öğe Biomarkers From Discovery to Clinical Application: In Silico Pre-Clinical Validation Approach in the Face of Lung Cancer(Sage Publications Ltd, 2024) Kori, Medi; Gov, Esra; Arga, Kazim Yalcin; Sinha, RaghuBackground: Clinical biomarkers, allow better classification of patients according to their disease risk, prognosis, and/or response to treatment. Although affordable omics-based approaches have paved the way for quicker identification of putative biomarkers, validation of biomarkers is necessary for translation of discoveries into clinical application.Objective: Accordingly, in this study, we emphasize the potential of in silico approaches and have proposed and applied 3 novel sequential in silico pre-clinical validation steps to better identify the biomarkers that are truly desirable for clinical investment.Design: As protein biomarkers are becoming increasingly important in the clinic alongside other molecular biomarkers and lung cancer is the most common cause of cancer-related deaths, we used protein biomarkers for lung cancer as an illustrative example to apply our in silico pre-clinical validation approach.Methods: We collected the reported protein biomarkers for 3 cases (lung adenocarcinoma-LUAD, squamous cell carcinoma-LUSC, and unspecified lung cancer) and evaluated whether the protein biomarkers have cancer altering properties (i.e., act as tumor suppressors or oncoproteins and represent cancer hallmarks), are expressed in body fluids, and can be targeted by FDA-approved drugs.Results: We collected 3008 protein biomarkers for lung cancer, 1189 for LUAD, and 182 for LUSC. Of these protein biomarkers for lung cancer, LUAD, and LUSC, only 28, 25, and 6 protein biomarkers passed the 3 in silico pre-clinical validation steps examined, and of these, only 5 and 2 biomarkers were specific for lung cancer and LUAD, respectively.Conclusion: In this study, we applied our in silico pre-clinical validation approach the protein biomarkers for lung cancer cases. However, this approach can be applied and adapted to all cancer biomarkers. We believe that this approach will greatly facilitate the transition of cancer biomarkers into the clinical phase and offers great potential for future biomarker research. Biomarkers, which are routinely used in clinics, allow better classification of patients according to their disease risk, prognosis, and/or response to treatment. Although affordable omics-based approaches have paved the way for quicker identification of putative biomarkers, validation of biomarkers is necessary for translation of discoveries into clinical application. This research article highlights the challenges of translating cancer biomarkers into clinical practice and summarizes feasible step toward in silico pre-clinical validation using the example of lung cancer types. Accordingly, protein biomarkers proposed for lung cancer are being investigated using the in silico pre-clinical validation approach to determine whether they have cancer altering properties (i.e., oncoprotein, tumor suppressor, and cancer hallmark), are expressed in body fluids (i.e., plasma/serum, saliva, urine, and bronchoalveolar lavage) and can be targeted with FDA-approved drugs. We believe that the step of in silico pre-clinical validation is the future of biomarker research for all professionals involved in clinical, biological, epidemiological, biostatistical and health research, and that it will greatly facilitate the transition of biomarkers to the clinical phase.Öğe Ovarian Cancer Differential Interactome and Network Entropy Analysis Reveal New Candidate Biomarkers(Mary Ann Liebert, Inc, 2017) Ayyildiz, Dilara; Gov, Esra; Sinha, Raghu; Arga, Kazim YalcinOvarian cancer is one of the most common cancers and has a high mortality rate due to insidious symptoms and lack of robust diagnostics. A hitherto understudied concept in cancer pathogenesis may offer new avenues for innovation in ovarian cancer biomarker development. Cancer cells are characterized by an increase in network entropy, and several studies have exploited this concept to identify disease-associated gene and protein modules. We report in this study the changes in protein-protein interactions (PPIs) in ovarian cancer within a differential network (interactome) analysis framework utilizing the entropy concept and gene expression data. A compendium of six transcriptome datasets that included 140 samples from laser microdissected epithelial cells of ovarian cancer patients and 51 samples from healthy population was obtained from Gene Expression Omnibus, and the high confidence human protein interactome (31,465 interactions among 10,681 proteins) was used. The uncertainties of the up- or downregulation of PPIs in ovarian cancer were estimated through an entropy formulation utilizing combined expression levels of genes, and the interacting protein pairs with minimum uncertainty were identified. We identified 105 proteins with differential PPI patterns scattered in 11 modules, each indicating significantly affected biological pathways in ovarian cancer such as DNA repair, cell proliferation-related mechanisms, nucleoplasmic translocation of estrogen receptor, extracellular matrix degradation, and inflammation response. In conclusion, we suggest several PPIs as biomarker candidates for ovarian cancer and discuss their future biological implications as potential molecular targets for pharmaceutical development as well. In addition, network entropy analysis is a concept that deserves greater research attention for diagnostic innovation in oncology and tumor pathogenesis.Öğe Ovarian Cancer Differential Interactome and Network Entropy Analysis Reveal New Candidate Biomarkers(Mary Ann Liebert, Inc, 2017) Ayyildiz, Dilara; Gov, Esra; Sinha, Raghu; Arga, Kazim YalcinOvarian cancer is one of the most common cancers and has a high mortality rate due to insidious symptoms and lack of robust diagnostics. A hitherto understudied concept in cancer pathogenesis may offer new avenues for innovation in ovarian cancer biomarker development. Cancer cells are characterized by an increase in network entropy, and several studies have exploited this concept to identify disease-associated gene and protein modules. We report in this study the changes in protein-protein interactions (PPIs) in ovarian cancer within a differential network (interactome) analysis framework utilizing the entropy concept and gene expression data. A compendium of six transcriptome datasets that included 140 samples from laser microdissected epithelial cells of ovarian cancer patients and 51 samples from healthy population was obtained from Gene Expression Omnibus, and the high confidence human protein interactome (31,465 interactions among 10,681 proteins) was used. The uncertainties of the up- or downregulation of PPIs in ovarian cancer were estimated through an entropy formulation utilizing combined expression levels of genes, and the interacting protein pairs with minimum uncertainty were identified. We identified 105 proteins with differential PPI patterns scattered in 11 modules, each indicating significantly affected biological pathways in ovarian cancer such as DNA repair, cell proliferation-related mechanisms, nucleoplasmic translocation of estrogen receptor, extracellular matrix degradation, and inflammation response. In conclusion, we suggest several PPIs as biomarker candidates for ovarian cancer and discuss their future biological implications as potential molecular targets for pharmaceutical development as well. In addition, network entropy analysis is a concept that deserves greater research attention for diagnostic innovation in oncology and tumor pathogenesis.