Yazar "Simsek, Serin Degerli" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Assessment of Hydrological Drought Index change over long period (1990-2020): The case of Iskenderun Gonencay Stream, Turkiye(Amer Inst Mathematical Sciences-Aims, 2023) Simsek, Serin Degerli; Capar, Omer Faruk; Turhan, EvrenRecently, due to changes in the global climate, there have been significant increases in flood and drought events. The changes in wet and dry periods can be examined by various methods using hydrometeorological data to analyze climate disasters. In this study, Gonencay Stream in the Asi River Basin was chosen as the study area, which contains abundant underground and surface water reserves in Turkiye. Within this region, not only are the agricultural activities intense, but also hydraulic structure applications such as dams and reservoirs draw attention. Previous studies stated that meteorological and agricultural droughts have started to be noticed in the basin. Therefore, temporal variation analyses can positively contribute to assessing possible hydrological droughts in the following years. In this context, wet and drought periods were determined using the Streamflow Drought Index method at 3, 6, 9, and 12-month time scales with monthly average flow data observed between 1990 and 2020. At the same time, the number and probabilities of drought categories on a 12-month time scale, the first expected transition times between classifications, and the expected residence times between categories were specified. The study revealed that the most severe dry period occurred between 2013 and 2014 and was classified as Extremely Drought. The wettest period was around 2018-2019 and was classified as Extremely Wet. The largest expected time residence among all classifications was calculated for the Extremely Drought category with nine months, means that if the Extremely Drought period ever occurs, it remains for approximately nine months. While the Moderately Drought period occurred within one month following the Extremely Drought duration, and a Near Normal Wet period was observed three months after the Extremely Wet period. The most seen drought category for monthly calculations was the Near Normal Wet category, and was seen over 200 times with a 52.8% probability. Considering the Gonencay region, it is possible that any Extreme drought classification eventually regresses to normal.Öğe Investigation of Transition Possibilities between Drought Classifications Using Standardized Precipitation Index for Wet and Dry Periods-Lower Seyhan Plain, T?rkiye Case(Polish Soc Ecological Engineering-Ptie, 2023) Simsek, Serin Degerli; Capar, Omer Faruk; Turhan, EvrenIn this study, the Karaisali region of Turkiye, which has a semi-arid climate and is known to contain the exten-sive plains and rich water resources of the Seyhan Basin, was preferred as a study area for investigating wet and drought periods for a long timescale. Forty-one years of total precipitation data, between 1980 and 2020, belonging to the closest precipitation observation station located in the Karaisali region were used. By using the Standardized Precipitation Index (SPI), which is one of the frequently used meteorological drought indices, drought classifica-tion probabilities, expected first transition period and residence time in each drought severity class values were calculated for the 12-month time scale. As a result of the study, it was determined that the most drought period took place in 2012 according to the examined time duration. In addition, the most wet period was observed in 2001. When various time scales were considered, SPI-3 and SPI-6 have Near Normal Wet periods, while SPI-9 and SPI-12 have Near Normal Drought periods. Extremely Wet periods were more numerous, while Extremely Drought periods lasted longer. In addition, 3 months after the end of the drought categories, it can be seen that the Wet and Drought periods change into Near Normal Wet and Near Normal Drought periods.Öğe Supplementing Missing Data Using the Drainage-Area Ratio Method and Evaluating the Streamflow Drought Index with the Corrected Data Set(Mdpi, 2023) Turhan, Evren; Simsek, Serin DegerliIn water resources management, it is essential to have a full and complete set of hydrological parameters to create accurate models. Especially for long-term data, any shortcomings may need to be filled using the appropriate methods. Moving the recorded observed data using the drainage-area ratio (DAR) method to different points is considered one of these methods. The present study used data from six different flow observation stations in the Asi River sub-basin, known as the fertile agricultural areas in Turkey, and transferred the data to various other locations that already have existing observations. This study tested how close the values this method produced were to the actual values and investigated the question how is missing data imputation improved by the determination of method bias coefficients? to analyze the method's accuracy, the streamflow drought index (SDI)-a hydrological drought index-was applied over a 12 month timescale. Contour maps were formed according to both the obtained index results by using the original data from the target station and the transferred streamflow data. As a result of this study, a severe divergence from the actual values was observed in the data directly transferred to the target stations in proportion to their area. The distance of the existing stations between each other produced a very high correlation coefficient, both in the direct transfer process and after the correction was applied. Similarly, in terms of drought index calculations, values close to 97% were seen in the original and transferred flow rates. Consequently, from the perspective of the effective management processes of water resources, the transportation of the data from basin-based observation stations corrected according to the drainage areas can be thought to positively affect the design stages and cost calculations for future water structures.