Yazar "Shahjaman, Md" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Bioinformatics and machine learning approach identifies potential drug targets and pathways in COVID-19(Oxford Univ Press, 2021) Auwul, Md Rabiul; Rahman, Md Rezanur; Gov, Esra; Shahjaman, Md; Moni, Mohammad AliCurrent coronavirus disease-2019 (COVID-19) pandemic has caused massive loss of lives. Clinical trials of vaccines and drugs are currently being conducted around the world; however, till now no effective drug is available for COVID-19. Identification of key genes and perturbed pathways in COVID-19 may uncover potential drug targets and biomarkers. We aimed to identify key gene modules and hub targets involved in COVID-19. We have analyzed SARS-CoV-2 infected peripheral blood mononuclear cell (PBMC) transcriptomic data through gene coexpression analysis. We identified 1520 and 1733 differentially expressed genes (DEGs) from the GSE152418 and CRA002390 PBMC datasets, respectively (FDR < 0.05). We found four key gene modules and hub gene signature based on module membership (MMhub) statistics and protein-protein interaction (PPI) networks (PPIhub). Functional annotation by enrichment analysis of the genes of these modules demonstrated immune and inflammatory response biological processes enriched by the DEGs. The pathway analysis revealed the hub genes were enriched with the IL-17 signaling pathway, cytokine-cytokine receptor interaction pathways. Then, we demonstrated the classification performance of hub genes (PLK1, AURKB, AURKA, CDK1, CDC20, KIF11, CCNB1, KIF2C, DTL and CDC6) with accuracy >0.90 suggesting the biomarker potential of the hub genes. The regulatory network analysis showed transcription factors and microRNAs that target these hub genes. Finally, drug-gene interactions analysis suggests amsacrine, BRD-K68548958, naproxol, palbociclib and teniposide as the top-scored repurposed drugs. The identified biomarkers and pathways might be therapeutic targets to the COVID-19.Öğe Identification of molecular signatures and pathways to identify novel therapeutic targets in Alzheimer's disease: Insights from a systems biomedicine perspective(Academic Press Inc Elsevier Science, 2020) Rahman, Md Rezanur; Islam, Tania; Zaman, Toyfiquz; Shahjaman, Md; Karim, Md Rezaul; Huq, Fazlul; Quinn, Julian M. W.Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. However, there are no peripheral biomarkers available that can detect AD onset. This study aimed to identify the molecular signatures in AD through an integrative analysis of blood gene expression data. We used two microarray datasets (GSE4226 and GSE4229) comparing peripheral blood transcriptomes of AD patients and controls to identify differentially expressed genes (DEGs). Gene set and protein overrepresentation analysis, protein-protein interaction (PPI), DEGs-Transcription Factors (TFs) interactions, DEGs-microRNAs (miRNAs) interactions, protein-drug interactions, and protein subcellular localizations analyses were performed on DEGs common to the datasets. We identified 25 common DEGs between the two datasets. Integration of genome scale transcriptome datasets with biomolecular networks revealed hub genes (NOL6, ATF3, TUBB, UQCRC1, CASP2, SND1, VCAM1, BTF3, VPS37B), common transcription factors (FOXC1, GATA2, NFIC, PPARG, USF2, YY1) and miRNAs (mir-20a-5p, mir-93-5p, mir-16-5p, let-7b-5p, mir-7085p, mir-24-3p, mir-26b-5p, mir-17-5p, mir-193-3p, mir-186-5p). Evaluation of histone modifications revealed that hub genes possess several histone modification sites associated with AD. Protein-drug interactions revealed 10 compounds that affect the identified AD candidate biomolecules, including anti-neoplastic agents (Vinorelbine, Vincristine, Vinblastine, Epothilone D, Epothilone B, CYT997, and ZEN-012), a dermatological (Podofilox) and an immunosuppressive agent (Colchicine). The subcellular localization of molecular signatures varied, including nuclear, plasma membrane and cytosolic proteins. In the present study, it was identified blood-cell derived molecular signatures that might be useful as candidate peripheral biomarkers in AD. It was also identified potential drugs and epigenetic data associated with these molecules that may be useful in designing therapeutic approaches to ameliorate AD.Öğe Identification of Prognostic Biomarker Signatures and Candidate Drugs in Colorectal Cancer: Insights from Systems Biology Analysis(Mdpi, 2019) Rahman, Md Rezanur; Islam, Tania; Gov, Esra; Turanli, Beste; Gulfidan, Gizem; Shahjaman, Md; Banu, Nilufa AkhterBackground and objectives: Colorectal cancer (CRC) is the second most common cause of cancer-related death in the world, but early diagnosis ameliorates the survival of CRC. This report aimed to identify molecular biomarker signatures in CRC. Materials and Methods: We analyzed two microarray datasets (GSE35279 and GSE21815) from the Gene Expression Omnibus (GEO) to identify mutual differentially expressed genes (DEGs). We integrated DEGs with protein-protein interaction and transcriptional/post-transcriptional regulatory networks to identify reporter signaling and regulatory molecules; utilized functional overrepresentation and pathway enrichment analyses to elucidate their roles in biological processes and molecular pathways; performed survival analyses to evaluate their prognostic performance; and applied drug repositioning analyses through Connectivity Map (CMap) and geneXpharma tools to hypothesize possible drug candidates targeting reporter molecules. Results: A total of 727 upregulated and 99 downregulated DEGs were detected. The PI3K/Akt signaling, Wnt signaling, extracellular matrix (ECM) interaction, and cell cycle were identified as significantly enriched pathways. Ten hub proteins (ADNP, CCND1, CD44, CDK4, CEBPB, CENPA, CENPH, CENPN, MYC, and RFC2), 10 transcription factors (ETS1, ESR1, GATA1, GATA2, GATA3, AR, YBX1, FOXP3, E2F4, and PRDM14) and two microRNAs (miRNAs) (miR-193b-3p and miR-615-3p) were detected as reporter molecules. The survival analyses through Kaplan-Meier curves indicated remarkable performance of reporter molecules in the estimation of survival probability in CRC patients. In addition, several drug candidates including anti-neoplastic and immunomodulating agents were repositioned. Conclusions: This study presents biomarker signatures at protein and RNA levels with prognostic capability in CRC. We think that the molecular signatures and candidate drugs presented in this study might be useful in future studies indenting the development of accurate diagnostic and/or prognostic biomarker screens and efficient therapeutic strategies in CRC.