Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Rohani, Abbas" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • [ X ]
    Öğe
    Application of machine learning for solar radiation modeling
    (Springer Wien, 2021) Taki, Morteza; Rohani, Abbas; Yildizhan, Hasan
    Solar radiation is an important parameter that affects the atmosphere-earth thermal balance and many water and soil processes such as evapotranspiration and plant growth. The modeling of the daily and monthly solar radiation by Gaussian process regression (GPR) with K-fold cross-validation model has been discussed recently. This study evaluated different neural models such as artificial neural network (ANN), support vector machine (SVM), adaptive network-based fuzzy inference system (ANFIS), and multiple linear regression (MLR) for estimating the global solar radiation (daily and monthly) with K-fold cross-validation method. For the appropriate comparison of the models, the randomized complete block (RCB) design applied in the training and test phases. Also, different data sets were evaluated by K-fold cross-validation in each model. The results showed that radial basis function (RBF) model has the lowest error for estimating the monthly and daily solar radiation. In this study, the result of RBF was compared with the GPR models. The conclusion indicated that RBF methodology can predict solar radiation with higher accuracy relative to the GPR model. The results of yearly solar radiation estimation (2009-2014) showed that the RBF model can estimate solar radiation with the MAPE and RMSE of 5.1% and 0.29, respectively. Also, the coefficient of correlation (R-2) between actual and estimated values throughout the year is 98% and can be used by the engineers and other researchers for solar and thermal applications.

| Adana Alparslan Türkeş Bilim ve Teknoloji Üniversitesi | Kütüphane | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Balcalı Mahallesi, Güney Kampüs, 10. Sokak, No: 1U, Sarıçam, Adana, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim