Yazar "Rabie, Khaled" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Adaptive Hierarchical Multi-Headed Convolutional Neural Network With Modified Convolutional Block Attention for Aerial Forest Fire Detection(IEEE-Inst Electrical Electronics Engineers Inc, 2025) Mowla, Md. Najmul; Asadi, Davood; Masum, Shamsul; Rabie, KhaledEffective detection and classification of forest fire imagery are critical for timely and efficient wildfire management. Convolutional Neural Networks (CNNs) have demonstrated potential in this domain but encounter limitations when addressing varying scales, resolutions, and complex spatial dependencies inherent in wildfire datasets. Building upon our prior work on the Unmanned Aerial Vehicle-based Forest Fire Database (UAVs-FFDB) and the multi-headed CNN (MHCNN), this study introduces a novel architecture, namely, the Adaptive Hierarchical Multi-Headed Convolutional Neural Network with Modified Convolutional Block Attention Module (AHMHCNN-mCBAM). This enhanced framework addresses prior challenges by integrating adaptive pooling, concatenated convolutions for multi-scale feature extraction, and an improved attention mechanism incorporating shared fully connected layers, Glorot initialization, rectified linear units (ReLU), layer normalization, and attention-gating. AHMHCNN-mCBAM incorporates Gated Recurrent Unit (GRU) and Bidirectional Long Short-Term Memory (BiLSTM) networks for temporal context modeling to further refine classification accuracy. Experiments conducted on the UAVs-FFDB dataset achieved outstanding results, including 100% accuracy, a 100% Cohen's kappa coefficient (cKappa), and compact model parameter sizes of 1.49 million (M), 0.25 M, and 0.12 M. On the Fire Luminosity Airborne-based Machine Learning Evaluation (FLAME) dataset, the model attained accuracy rates of 99.83%, 99.10%, and 99.32%, with corresponding cKappa values of 99.66%, 98.20%, and 98.65%. Compared to the baseline hierarchical MHCNN with CBAM (HMHCNN-CBAM), AHMHCNN-mCBAM demonstrated significant performance gains, including a 6.80% and 6.59% increase in accuracy, a 9.26% and 14.11% improvement in cKappa, and a 13.87% and 13.76% reduction in parameter size on the UAVs-FFDB and FLAME datasets, respectively. Additionally, AHMHCNN-mCBAM outperformed HMHCNN-CBAM in recall (25% improvement), precision (21.95%), F1-score (14.94%), and fire detection rate (FDR) reduction (25.01%), while achieving a 100% reduction in error warning rate (EWR). Leveraging Explainable Artificial Intelligence (XAI) techniques, the model provides interpretable insights into decision-making processes.Öğe UAVs-FFDB: A high-resolution dataset for advancing forest fire detection and monitoring using unmanned aerial vehicles (UAVs)(Elsevier Inc., 2024) Mowla, Md. Najmul; Asadi, Davood; Tekeoglu, Kadriye Nur; Masum, Shamsul; Rabie, KhaledForest ecosystems face increasing wildfire threats, demanding prompt and precise detection methods to ensure efficient fire control. However, real-time forest fire data accessibility and timeliness require improvement. Our study addresses the challenge through the introduction of the Unmanned Aerial Vehicles (UAVs) based forest fire database (UAVs-FFDB), characterized by a dual composition. Firstly, it encompasses a collection of 1653 high-resolution RGB raw images meticulously captured utilizing a standard S500 quadcopter frame in conjunction with a RaspiCamV2 camera. Secondly, the database incorporates augmented data, culminating in a total of 15560 images, thereby enhancing the diversity and comprehensiveness of the dataset. These images were captured within a forested area adjacent to Adana Alparslan Türkeş Science and Technology University in Adana, Turkey. Each raw image in the dataset spans dimensions from 353 × 314 to 640 × 480, while augmented data ranges from 398 × 358 to 640 × 480, resulting in a total dataset size of 692 MB for the raw data subset. In contrast, the augmented data subset accounts for a considerably larger size, totaling 6.76 GB. The raw images are obtained during a UAV surveillance mission, with the camera precisely angled a -180-degree to be horizontal to the ground. The images are taken from altitudes alternating between 5 - 15 meters to diversify the field of vision and to build a more inclusive database. During the surveillance operation, the UAV speed is 2 m/s on average. Following this, the dataset underwent meticulous annotation using the advanced annotation platform, Makesense.ai, enabling accurate demarcation of fire boundaries. This resource equips researchers with the necessary data infrastructure to develop innovative methodologies for early fire detection and continuous monitoring, enhancing efforts to protect ecosystems and human lives while promoting sustainable forest management practices. Additionally, the UAVs-FFDB dataset serves as a foundational cornerstone for the advancement and refinement of state-of-the-art AI-based methodologies, aiming to automate fire classification, recognition, detection, and segmentation tasks with unparalleled precision and efficacy. © 2024 The Author(s)