Yazar "Pinar, Engin" seçeneğine göre listele
Listeleniyor 1 - 3 / 3
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Experimental study on passive flow control of circular cylinder via perforated splitter plate(Techno-Press, 2021) Sahin, Serdar; Durhasan, Tahir; Pinar, Engin; Akilli, HuseyinPresent experimental investigation aims to reduce the shedding of vortex in the near wake region of a circular cylinder using a perforated splitter plate. Perforated plates were placed in the wake region of the cylinder and aligned with the streamwise direction. The length of the plates was equal to the diameter of the cylinder. Different plate porosities and locations were examined and obtained results were compared to the baseline cylinder. Flow measurements downstream of the cylinder were performed in a water channel by employing a particle image velocimetry technique (PIV) at a Reynolds number of Re=5×103. It is observed that the effect of the porosity on the flow characteristics of the cylinder depends on the location of the plate. The strength of shear layers and flow fluctuations in the near wake region of the cylinder are considerably diminished by the perforated splitter plate. It is found that the porosity of ?=0.3 is the most effective control element for gap ratio of G/D=0.5. On the other hand, proper gap ratio is determined as G/D=2 for porosity of ?=0.7. It is concluded in the present study that the perforated splitter plate could be used as alternative passive flow control technique in order to reduce vortex shedding of the cylinder. Copyright © 2021 Techno-Press, Ltd.Öğe FLOW CONTROL OF A CIRCULAR CYLINDER BY PERMEABLE SPLITTER PLATE WITH DIFFERENT POROSITIES AND ANGLE VALUES(Turkish Soc Thermal Sciences Technology, 2024) Sahin, Serdar; Durhasan, Tahir; Pinar, Engin; Akilli, HuseyinFlow control of bluff bodies has been studied extensively to eliminate adverse effects of wake flow such as vibration and acoustic noise or resonance. The circular cylinder has been studied as the bluff body since it is basic geometry and has been used in engineering applications such as heat exchanger tubes, power transmission lines, chimney stacks, bridges, radio telescopes, power lines, offshore drilling rigs etc. In this study, a permeable splitter plate was located at various downstream locations to control the wake flow of the cylinder. All experiments were carried out in a large-scale closed-loop water channel in the Fluid Mechanics Laboratory at Cukurova University. PIV was used to measure the instantaneous velocity vector field in the wake region of the cylinder at Reynolds number Re=5000, which is based on the cylinder diameter, D. Four different splitter plate angle values (0 =0 degrees; 15 degrees; 30 degrees; 45 degrees), three different porosity values (epsilon=0.30; 0.50; 0.70) were investigated. The porosity (epsilon) of the separator plates is defined as the ratio of the total hole area to the plate surface area. All lengths are nondimensionalized by dividing by the cylinder diameter and shown with the * index. The splitter plate length kept to constant during the experiment as ls*=1. The distance between the leading edge of the splitter plate and the cylinder (lg*) is variable due to the rotation of the separator plate at certain angles in the flow direction. To overcome this, the distance between the splitter plate rotation axis and the cylinder was taken as a parameter and shown with the **. The gap between splitter plate midpoint and cylinder (lg**) kept to constant during the experiments as lg**=1.5. When the plates are rotated, the cross-section parallel to the flow decreases, which increases the interaction between the boundary layers. Since the permeable separator plates prevent the interaction of the boundary layers formed in the flow around the cylinder, the effect of the permeable separator plates increases in the downstream regions where the interaction of the boundary layers increases. Thus, the fluctuations are reduced, and a more stabilized trail flow occurs downstream of the cylinder. It was observed that the vortex formation was delayed with the increase of the separator plate angle. In this study, the effect of the separator plate angle and the effect of the plate permeability were clearly observed.Öğe Time series analysis of sea surface temperature change in the coastal seas of Turkiye(Pergamon-Elsevier Science Ltd, 2024) Bilgili, Mehmet; Durhasan, Tahir; Pinar, EnginSea surface temperature (SST) is a crucial geophysical parameter in assessing heat exchange between the air and sea surface. Changes in SST and its accurate prediction play a pivotal role in explaining the global heat balance, determining atmospheric circulations, and constructing global climate models. This work aims to reveal a model for one-month-ahead forecasting of SST time series data along the Turkiye coasts, encompassing the Mediterranean, Aegean, Marmara, and Black Seas, and their long-term future forecast. A long short-term memory (LSTM) neural network and seasonal autoregressive integrated moving average (SARIMA) models are used for this purpose. The ECMWF ERA5 (0.5(o)x0.5 degrees) monthly SST dataset spanning the years 1970-2023 is used for model development. The results obtained from the LSTM and SARIMA models show that there will be an increasing trend in SSTs along these seacoasts until 2050. The SST measurements of 23.4 degrees C, 20.2 degrees C, 17.0 degrees C, and 16.6 degrees C recorded along the Mediterranean, Aegean, Marmara, and Black Seas in 2023 are expected to rise to 25.1 degrees C, 21.9 degrees C, 18.1 degrees C, and 18.8 degrees C, respectively, by 2050. These figures indicate an increase of 7.3%, 8.4%, 6.5%, and 13.3% in the SST values across these coastal seas over the next quarter century.