Yazar "Ozmen-Cagatay, Hatice" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe An experimental investigation of dam-break induced flood waves for different density fluids(Pergamon-Elsevier Science Ltd, 2022) Ozmen-Cagatay, Hatice; Turhan, Evren; Kocaman, SelahattinThe present study aims to investigate the effect of various fluids on dam-break flow propagation in a rectangular and horizontal channel under dry bed conditions. Laboratory experiments were carried out to produce dam break flood waves in a tank by the sudden release of a movable gate that divided the tank into a reservoir and a downstream channel. In these experiments, three different fluids were used as Newtonian fluids in the reservoir: normal water, sunflower oil, and salt water. A digital image processing technique was adopted for the experimental characterization of the dam-break waves. Instantaneous free surface profiles of the dam-break flow were captured by a high-speed camera. Free-surface profiles for different times and time evolution of the flow depths at four selected locations were determined. The types of fluids had an effect on the results due to their specific characteristics such as density and viscosity. Furthermore, numerical simulation of the problem was performed by Reynolds-averaged Navier-Stokes (RANS) and Volume of Fluid (VOF) based software Flow-3D. When the experimental data were compared with the numerical simulation results, there was good agreement for the elapsed time and selected measuring locations.Öğe Experimental and Numerical Investigation of Shock Wave Propagation Due to Dam-Break Over a Wet Channel(Hard, 2019) Turhan, Evren; Ozmen-Cagatay, Hatice; Kocaman, SelahattinWe investigated the propagation of shock waves in a prismatic rectangular channel with a horizontal wet bed. Saltwater was used as a Newtonian fluid within the entire channel instead of normal water for representing the different density fluids. It aims to point out seawater where tsunamis occur as an extreme example of shock waves. The shock waves were generated by sudden lifting of a vertical gate that separated a reservoir and a downstream channel with three different tailwater depths. The experimental data were digitized using image processing techniques. Furthermore, the flow was numerically solved by using Reynolds Averaged Navier-Stokes (RANS) equations and a DualSPHysics program (a code version of smoothed particle hydrodynamics (SPH)). After sudden removal of the vertical gate the propagations of shock waves were experimentally examined via image processing, which can yield both free surface profiles at several times and variations of flow depth with time at four specified locations. Solution successes of two different numerical methods for this rapidly varied unsteady flow are tested by comparing the laboratory data. The results indicate that the disagreements on graphs of time evolutions of water levels obtained from two numerical simulations decrease when the initial tailwater levels increase.